A New Insight into Morphology of Solvent Resistant Nanofiltration (SRNF) Membranes: Image Processing Assisted Review

Document Type : Research Paper

Authors

1 Nanotechnology research institute, Faculty of Chemical Engineering, Babol University of Technology, Babol, Iran

2 Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.

3 Faculty of electrical and computer engineering, Hakim Sabzevari University, Sabzevar, Iran

Abstract

The aim of this review is to investigate the morphological properties of polyimide based SRNF membranes by mean of image processing. Effect of phase inversion parameters like polymer concentration, volatile co-solvent, pre-evaporation time, additives in coagulation bath, polymers weight ratio in composite membranes, addition of nano particles and cross-linking agents have been reviewed. The voids of membrane were targeted to survey in the aspect of void area concentration in the SEM micrograph, mean of voids area, voids orientation and circle equivalent diameters of voids. This method by mean of the developed software could make the morphological studies of membranes easy. The population of different measured parameters of the voids could also measure. In conclusion for polyimide based membranes there are specific trends for change in voids properties by changing of phase inversion parameters. It was predictable, but investigated qualitatively up to now and this review can confirm the qualitative observations and also open new discussions about, for example void orientations that are not investigated in any study up to now.

Keywords


[1] Elkina, I. B., A. B. Gilman, V. V. Ugrozov, and V. V. Volkov, (2013) “Separation of mineral acid solutions by membrane distillation and thermopervaporation through porous and nonporous membranes,” Industrial & Engineering Chemistry Research, vol. 52, pp. 8856-8863.
[2] Fu, F. and Q. Wang, (2011) “Removal of heavy metal ions from wastewaters: a review,” Journal of Environmental Management, vol. 92, pp. 407-418.
[3] Marchetti, P., M. F. Jimenez Solomon, G. Szekely, and A. G. Livingston, (2014) “Molecular Separation with Organic Solvent Nanofiltration: A Critical Review,” Chemical Reviews, vol. 114, pp. 10735-10806.
[4] Luyben, W. L., (2013)”Comparison of extractive distillation and pressure-swing distillation for acetone/chloroform separation,” Computers & Chemical Engineering, vol. 50, pp. 1-7.
[5] Luyben, W. L. and I.-L. Chien, Design and control of distillation systems for separating azeotropes: John Wiley & Sons, 2011.
[6] Jessop, P. G., (2011) “Searching for green solvents,” Green Chemistry, vol. 13, pp. 1391-1398.
[7] Darvishmanesh, S., L. Firoozpour, J. Vanneste, P. Luis, J. Degrève, and B. Van der Bruggen, (2011) “Performance of solvent resistant nanofiltration membranes for purification of residual solvent in the pharmaceutical industry: experiments and simulation,” Green Chemistry, vol. 13, pp. 3476-3483.
[8] Rundquist, E. M., C. J. Pink, and A. G. Livingston, (2012) “Organic solvent nanofiltration: a potential alternative to distillation for solvent recovery from crystallisation mother liquors,” Green Chemistry, vol. 14, pp. 2197-2205.
[9] Székely, G., J. Bandarra, W. Heggie, B. Sellergren, and F. C. Ferreira, (2011) “Organic solvent nanofiltration: a platform for removal of genotoxins from active pharmaceutical ingredients,” Journal of Membrane Science, vol. 381, pp. 21-33.
[10] Vandezande, P., L. E. Gevers, and I. F. Vankelecom, (2008) “Solvent resistant nanofiltration: separating on a molecular level,” Chemical Society Reviews, vol. 37, pp. 365-405.
[11] Mulder, M., Basic principles of membrane technology: Springer Science & Business Media, 1996.
[12] Loeb, S., (1965) “Desalination Research in California,” Science (New York, NY), vol. 147, p. 1241.
[13] Peyravi, M., M. Jahanshahi, A. Rahimpour, A. Javadi, and S. Hajavi, (2014) “Novel thin film nanocomposite membranes incorporated with functionalized TiO 2 nanoparticles for organic solvent nanofiltration,” Chemical Engineering Journal, vol. 241, pp. 155-166.
[14] Peyravi, M., A. Rahimpour, and M. Jahanshahi, (2015) “Developing nanocomposite PI membranes: Morphology and performance to glycerol removal at the downstream processing of biodiesel production,” Journal of Membrane Science, vol. 473, pp. 72-84.
[15] Peyravi, M., A. Rahimpour, and M. Jahanshahi, (2012) “Thin film composite membranes with modified polysulfone supports for organic solvent nanofiltration,” Journal of Membrane Science, vol. 423, pp. 225-237.
[16] Xu, Z.-L. and F. A. Qusay, (2004) “Polyethersulfone (PES) hollow fiber ultrafiltration membranes prepared by PES/non-solvent/NMP solution,” Journal of Membrane Science, vol. 233, pp. 101-111.
[17] Alsvik, I. L. and M.-B. Hägg, (2013) “Pressure retarded osmosis and forward osmosis membranes: materials and methods,” Polymers, vol. 5, pp. 303-327.
[18] Hwang, S. H., C. Kim, H. Song, S. Son, and J. Jang, (2012) “Designed architecture of multiscale porous TiO2 nanofibers for dye-sensitized solar cells photoanode,” ACS applied materials & interfaces, vol. 4, pp. 5287-5292.
[19] Mohammadi Rovshandeh, J., K. Ekhlasi Kazaj, A. Hosseini, and P. Pouresmaeel Selakjani, (2014) “Effect of Glycerol and Stearic Acid as Plasticizer on Physical Properties of Benzylated Wheat Straw,” Iranian journal of chemistry and chemical engineering, vol. 33, pp. 107-116.
[20] Khulbe, K. C., C. Feng, and T. Matsuura, Synthetic polymeric membranes: characterization by atomic force microscopy: Springer Science & Business Media, 2007.
[21] Rahimpour, A., M. Jahanshahi, N. Mortazavian, S. S. Madaeni, and Y. Mansourpanah, (2010) “Preparation and characterization of asymmetric polyethersulfone and thin-film composite polyamide nanofiltration membranes for water softening,” Applied Surface Science, vol. 256, pp. 1657-1663.
[22] Basu, S., A. Cano-Odena, and I. F. Vankelecom, (2010) “Asymmetric Matrimid®/[Cu 3 (BTC) 2] mixed-matrix membranes for gas separations,” Journal of membrane science, vol. 362, pp. 478-487.
[23] Hołda, A. K., B. Aernouts, W. Saeys, and I. F. Vankelecom, (2013) “Study of polymer concentration and evaporation time as phase inversion parameters for polysulfone-based SRNF membranes,” Journal of Membrane Science, vol. 442, pp. 196-205.
[24] Luiten-Olieman, M. W., L. Winnubst, A. Nijmeijer, M. Wessling, and N. E. Benes, (2011) “Porous stainless steel hollow fiber membranes via dry–wet spinning,” Journal of Membrane Science, vol. 370, pp. 124-130.
[25] Mutamim, N. S. A., Z. Z. Noor, M. A. A. Hassan, and G. Olsson, (2012) “Application of membrane bioreactor technology in treating high strength industrial wastewater: a performance review,” Desalination, vol. 305, pp. 1-11.
[26] So, M., F. Eirich, H. Strathmann, and R. Baker, (1973) “Preparation of asymmetric loeb‐sourirajan membranes,” Journal of Polymer Science: Polymer Letters Edition, vol. 11, pp. 201-205.
[27] Strathmann, H. and K. Kock, (1977) “The formation mechanism of phase inversion membranes,” Desalination, vol. 21, pp. 241-255.
[28] Soroko, I., M. Makowski, F. Spill, and A. Livingston, (2011) “The effect of membrane formation parameters on performance of polyimide membranes for organic solvent nanofiltration (OSN). Part B: Analysis of evaporation step and the role of a co-solvent,” Journal of Membrane Science, vol. 381, pp. 163-171.
[29] Garcí􀆴a-Fernández, L., M. Garcí􀆴a-Payo, and M. Khayet, (2014) “Effects of mixed solvents on the structural morphology and membrane distillation performance of PVDF-HFP hollow fiber membranes,” Journal of Membrane Science, vol. 468, pp. 324-338.
[30] Bulut, M., L. E. Gevers, J. S. Paul, I. F. Vankelecom, and P. A. Jacobs, (2006) “Directed development of high-performance membranes via high-throughput and combinatorial strategies,” Journal of combinatorial chemistry, vol. 8, pp. 168-173.
[31] Vandezande, P., L. E. Gevers, J. S. Paul, I. F. Vankelecom, and P. A. Jacobs, (2005) “High throughput screening for rapid development of membranes and membrane processes,” Journal of membrane science, vol. 250, pp. 305-310.
[32] Mertens, P., M. Bulut, L. Gevers, I. Vankelecom, P. Jacobs, and D. De Vos, (2005) “Catalytic oxidation of 1, 2-diols to α-hydroxy-carboxylates with stabilized gold nanocolloids combined with a membrane-based catalyst separation,” Catalysis letters, vol. 102, pp. 57-61.
[33] Mertens, P. G., F. Cuypers, P. Vandezande, X. Ye, F. Verpoort, I. F. Vankelecom, et al., (2007) “Ag 0 and Co 0 nanocolloids as recyclable quasihomogeneous metal catalysts for the hydrogenation of α, β-unsaturated aldehydes to allylic alcohol fragrances,” Applied Catalysis A: General, vol. 325, pp. 130-139.
[34] Gevers, L. E., G. Meyen, K. De Smet, P. Van De Velde, F. Du Prez, I. F. Vankelecom, et al., (2006) “Physico-chemical interpretation of the SRNF transport mechanism for solutes through dense silicone membranes,” Journal of membrane science, vol. 274, pp. 173-182.
[35] Gevers, L. E., S. Aldea, I. F. Vankelecom, and P. A. Jacobs, (2006) “Optimisation of a lab-scale method for preparation of composite membranes with a filled dense top-layer,” Journal of membrane science, vol. 281, pp. 741-746.
[36] See-Toh, Y. H., F. C. Ferreira, and A. G. Livingston, (2007) “The influence of membrane formation parameters on the functional performance of organic solvent nanofiltration membranes,” Journal of membrane science, vol. 299, pp. 236-250.
[37] White, L. S., (2002) “Transport properties of a polyimide solvent resistant nanofiltration membrane,” Journal of Membrane Science, vol. 205, pp. 191-202.
[38] Yoo, S. H., J. H. Kim, J. Y. Jho, J. Won, and Y. S. Kang, (2004) “Influence of the addition of PVP on the morphology of asymmetric polyimide phase inversion membranes: effect of PVP molecular weight,” Journal of membrane science, vol. 236, pp. 203-207.
[39] Wang, J., Z. Yue, J. S. Ince, and J. Economy, (2006) “Preparation of nanofiltration membranes from polyacrylonitrile ultrafiltration membranes,” Journal of membrane science, vol. 286, pp. 333-341.
[40] Chen, J., J. Li, Z.-P. Zhao, D. Wang, and C.-X. Chen, (2007) “Nanofiltration membrane prepared from polyacrylonitrile ultrafiltration membrane by low-temperature plasma: 5. Grafting of styrene in vapor phase and its application,” Surface and Coatings Technology, vol. 201, pp. 6789-6792.
[41] Stafie, N., D. Stamatialis, and M. Wessling, (2004) “Insight into the transport of hexane–solute systems through tailor-made composite membranes,” Journal of Membrane Science, vol. 228, pp. 103-116.
[42] Stamatialis, D., N. Stafie, K. Buadu, M. Hempenius, and M. Wessling, (2006) “Observations on the permeation performance of solvent resistant nanofiltration membranes,” Journal of membrane science, vol. 279, pp. 424-433.
[43] Vankelecom, I. F., K. De Smet, L. E. Gevers, A. Livingston, D. Nair, S. Aerts, et al., (2004) “Physico-chemical interpretation of the SRNF transport mechanism for solvents through dense silicone membranes,” Journal of membrane science, vol. 231, pp. 99-108.
[44] Tsui, E. M. and M. Cheryan, (2004) “Characteristics of nanofiltration membranes in aqueous ethanol,” Journal of membrane science, vol. 237, pp. 61-69.
[45] Oh, N. W., J. Jegal, and K. H. Lee, (2001) “Preparation and characterization of nanofiltration composite membranes using polyacrylonitrile (PAN). II. Preparation and characterization of polyamide composite membranes,” Journal of applied polymer science, vol. 80, pp. 2729-2736.
[46] Ebert, K., J. Koll, M. Dijkstra, and M. Eggers, (2006) “Fundamental studies on the performance of a hydrophobic solvent stable membrane in non-aqueous solutions,” Journal of membrane science, vol. 285, pp. 75-80.
[47] Hicke, H.-G., I. Lehmann, G. Malsch, M. Ulbricht, and M. Becker, (2002) “Preparation and characterization of a novel solvent-resistant and autoclavable polymer membrane,” Journal of membrane science, vol. 198, pp. 187-196.
[48] Verissimo, S., K.-V. Peinemann, and J. Bordado, (2005) “Thin-film composite hollow fiber membranes: an optimized manufacturing method,” Journal of membrane science, vol. 264, pp. 48-55.
[49] Daisley, G. R., M. G. Dastgir, F. C. Ferreira, L. G. Peeva, and A. G. Livingston, (2006) “Application of thin film composite membranes to the membrane aromatic recovery system,” Journal of membrane science, vol. 268, pp. 20-36.
[50] Gevers, L. E., I. F. Vankelecom, and P. A. Jacobs, (2006) “Solvent-resistant nanofiltration with filled polydimethylsiloxane (PDMS) membranes,” Journal of membrane science, vol. 278, pp. 199-204.
[51] Aerts, S., A. Vanhulsel, A. Buekenhoudt, H. Weyten, S. Kuypers, H. Chen, et al., (2006) “Plasma-treated PDMS-membranes in solvent resistant nanofiltration: characterization and study of transport mechanism,” Journal of membrane science, vol. 275, pp. 212-219.
[52] Vankelecom, I. F., E. Scheppers, R. Heus, and J. B. Uytterhoeven, (1994) “Parameters influencing zeolite incorporation in PDMS membranes,” The Journal of Physical Chemistry, vol. 98, pp. 12390-12396.
[53] Gevers, L. E., I. F. Vankelecom, and P. A. Jacobs, (2005) “Zeolite filled polydimethylsiloxane (PDMS) as an improved membrane for solvent-resistant nanofiltration (SRNF),” Chemical communications, pp. 2500-2502.
[54] Tarleton, E., J. Robinson, and M. Salman, (2006) “Solvent-induced swelling of membranes—measurements and influence in nanofiltration,” Journal of membrane science, vol. 280, pp. 442-451.
[55] Musale, D. A. and A. Kumar, (2000) “Solvent and pH resistance of surface crosslinked chitosan/poly (acrylonitrile) composite nanofiltration membranes,” Journal of applied polymer science, vol. 77, pp. 1782-1793.
[56] Musale, D. A. and A. Kumar, (2000) “Effects of surface crosslinking on sieving characteristics of chitosan/poly (acrylonitrile) composite nanofiltration membranes,” Separation and purification technology, vol. 21, pp. 27-37.
[57] Florian, E., M. Modesti, and M. Ulbricht, (2007) “Preparation and characterization of novel solvent-resistant nanofiltration composite membranes based on crosslinked polyurethanes,” Industrial & engineering chemistry research, vol. 46, pp. 4891-4899.
[58] Dijkstra, M., S. Bach, and K. Ebert, (2006) “A transport model for organophilic nanofiltration,” Journal of membrane science, vol. 286, pp. 60-68.
[59] Robinson, J., E. Tarleton, C. Millington, and A. Nijmeijer, (2004) “Solvent flux through dense polymeric nanofiltration membranes,” Journal of membrane science, vol. 230, pp. 29-37.
[60] Datta, A., K. Ebert, and H. Plenio, (2003) “Nanofiltration for homogeneous catalysis separation: soluble polymer-supported palladium catalysts for Heck, Sonogashira, and Suzuki coupling of aryl halides,” Organometallics, vol. 22, pp. 4685-4691.
[61] Zhang, H., Y. Zhang, L. Li, S. Zhao, H. Ni, S. Cao, et al., (2014) “Cross-linked polyacrylonitrile/polyethyleneimine–polydimethylsiloxane composite membrane for solvent resistant nanofiltration,” Chemical Engineering Science, vol. 106, pp. 157-166.
[62] Madakbaş, S., E. Çakmakçı, and M. V. Kahraman, (2013) “Preparation and thermal properties of polyacrylonitrile/hexagonal boron nitride composites,” Thermochimica Acta, vol. 552, pp. 1-4.
[63] Chen, X.-N., L.-S. Wan, Q.-Y. Wu, S.-H. Zhi, and Z.-K. Xu, (2013) “Mineralized polyacrylonitrile-based ultrafiltration membranes with improved water flux and rejection towards dye,” Journal of Membrane Science, vol. 441, pp. 112-119.
[64] Chen, D., S. Yu, H. Zhang, and X. Li, (2015) “Solvent Resistant Nanofiltration Membrane based on Polybenzimidazole,” Separation and Purification Technology.
[65] Valtcheva, I. B., S. C. Kumbharkar, J. F. Kim, Y. Bhole, and A. G. Livingston, (2014) “Beyond polyimide: Crosslinked polybenzimidazole membranes for organic solvent nanofiltration (OSN) in harsh environments,” Journal of Membrane Science, vol. 457, pp. 62-72.
[66] Xing, D. Y., S. Y. Chan, and T.-S. Chung, (2014) “The ionic liquid [EMIM] OAc as a solvent to fabricate stable polybenzimidazole membranes for organic solvent nanofiltration,” Green Chemistry, vol. 16, pp. 1383-1392.
[67] Lu, X., X. Bian, and L. Shi, (2002) “Preparation and characterization of NF composite membrane,” Journal of membrane science, vol. 210, pp. 3-11.
[68] Yeow, M., Y. Liu, and K. Li, (2005) “Preparation of porous PVDF hollow fibre membrane via a phase inversion method using lithium perchlorate (LiClO 4) as an additive,” Journal of membrane science, vol. 258, pp. 16-22.
[69] Ochoa, N., C. Pagliero, J. Marchese, and M. Mattea, (2001) “Ultrafiltration of vegetable oils: degumming by polymeric membranes,” Separation and Purification Technology, vol. 22, pp. 417-422.
[70] Namvar-Mahboub, M. and M. Pakizeh, (2013) “Development of a novel thin film composite membrane by interfacial polymerization on polyetherimide/modified SiO 2 support for organic solvent nanofiltration,” Separation and Purification Technology, vol. 119, pp. 35-45.
[71] Cheng, X. Q., Y. L. Zhang, Z. X. Wang, Z. H. Guo, Y. P. Bai, and L. Shao, (2014) “Recent Advances in Polymeric Solvent‐Resistant Nanofiltration Membranes,” Advances in Polymer Technology, vol. 33.
[72] Kim, I. C., H. G. Yoon, and K. H. Lee, (2002) “Formation of integrally skinned asymmetric polyetherimide nanofiltration membranes by phase inversion process,” Journal of applied polymer science, vol. 84, pp. 1300-1307.
[73] Kim, I.-C., K.-H. Lee, and T.-M. Tak, (2001) “Preparation and characterization of integrally skinned uncharged polyetherimide asymmetric nanofiltration membrane,” Journal of Membrane Science, vol. 183, pp. 235-247.
[74] Gupta, K., (1997) “Synthesis and evaluation of aromatic polyamide membranes for desalination in reverse‐osmosis technique,” Journal of applied polymer science, vol. 66, pp. 643-653.
[75] Konagaya, S., M. Tokai, and H. Kuzumoto, (2001) “Reverse osmosis performance and chlorine resistance of new ternary aromatic copolyamides comprising 3, 3′‐diaminodiphenylsulfone and a comonomer with a carboxyl group,” Journal of applied polymer science, vol. 80, pp. 505-513.
[76] Mohamed, N. A., (1997) “Novel wholly aromatic polyamide-hydrazides: 6. Dependence of membrane reverse osmosis performance on processing parameters and polymer structural variations,” Polymer, vol. 38, pp. 4705-4713.
[77] Kosaraju, P. and K. Sirkar, (2008) “Interfacially polymerized thin film composite membranes on microporous polypropylene supports for solvent-resistant nanofiltration,” Journal of Membrane Science, vol. 321, pp. 155-161.
[78] Jahanshahi, M., A. Rahimpour, and M. Peyravi, (2010) “Developing thin film composite poly (piperazine-amide) and poly (vinyl-alcohol) nanofiltration membranes,” Desalination, vol. 257, pp. 129-136.
[79] Boussu, K., C. Vandecasteele, and B. Van der Bruggen, (2006) “Study of the characteristics and the performance of self-made nanoporous polyethersulfone membranes,” Polymer, vol. 47, pp. 3464-3476.
[80] Buch, P. R., D. J. Mohan, and A. V. Reddy, (2006) “Poly (amide imide) s and poly (amide imide) composite membranes by interfacial polymerization,” Polymer international, vol. 55, pp. 391-398.
[81] Zhang, H., Z. Ren, Y. Zhang, Q. Yuan, and X. J. Yang, (2015) “Comparison Between Polydimethylsiloxane and Polyimide-Based Solvent Resistant Nanofiltration Membranes,” Chemical Engineering Communications.
[82] Chavan, S. A., W. Maes, L. E. Gevers, J. Wahlen, I. F. Vankelecom, P. A. Jacobs, et al., (2005) “Porphyrin‐Functionalized Dendrimers: Synthesis and Application as Recyclable Photocatalysts in a Nanofiltration Membrane Reactor,” Chemistry-A European Journal, vol. 11, pp. 6754-6762.
[83] Aerts, S., H. Weyten, A. Buekenhoudt, L. Gevers, I. Vankelecom, and P. Jacobs, (2004) “Recycling of the homogeneous Co-Jacobsen catalyst through solvent-resistent nanofiltration (SRNF),” Chemical communications, pp. 710-711.
[84] Zwijnenberg, H., A. Krosse, K. Ebert, K. Peinemann, and F. Cuperus, (1999) “Acetone-stable nanofiltration membranes in deacidifying vegetable oil,” Journal of the American Oil Chemists’ Society, vol. 76, pp. 83-87.
[85] Lai, J.-Y., F.-C. Lin, C.-C. Wang, and D.-M. Wang, (1996) “Effect of nonsolvent additives on the porosity and morphology of asymmetric TPX membranes,” Journal of membrane science, vol. 118, pp. 49-61.
[86] Tsarkov, S., V. Khotimskiy, P. M. Budd, V. Volkov, J. Kukushkina, and A. Volkov, (2012) “Solvent nanofiltration through high permeability glassy polymers: Effect of polymer and solute nature,” Journal of Membrane Science, vol. 423, pp. 65-72.
[87] Wang, B. and Z. Lai, (2012) “Finger-like voids induced by viscous fingering during phase inversion of alumina/PES/NMP suspensions,” Journal of membrane science, vol. 405, pp. 275-283.
[88] Sadrzadeh, M. and S. Bhattacharjee, (2013) “Rational design of phase inversion membranes by tailoring thermodynamics and kinetics of casting solution using polymer additives,” Journal of Membrane Science, vol. 441, pp. 31-44.
[89] Aroon, M. A., A. F. Ismail, and T. Matsuura, (2013) “Beta-cyclodextrin functionalized MWCNT: A potential nano-membrane material for mixed matrix gas separation membranes development,” Separation and Purification Technology, vol. 115, pp. 39-50.
[90] Kiadehi, A. D., M. Jahanshahi, A. Rahimpour, and S. A. A. Ghoreyshi, (2015) “The effect of functionalized carbon nano-fiber (CNF) on gas separation performance of polysulfone (PSf) membranes,” Chemical Engineering and Processing: Process Intensification, vol. 90, pp. 41-48.
[91] Kiadehi, A. D., A. Rahimpour, M. Jahanshahi, and A. A. Ghoreyshi, (2014) “Novel carbon nano-fibers (CNF)/polysulfone (PSf) mixed matrix membranes for gas separation,” Journal of Industrial and Engineering Chemistry.
[92] Dyke, C. A., “Dry-jet wet spun carbon fibers and processes for making them using a nucleophilic filler/pan precurson,” ed: Google Patents, 2012.
[93] Karunakaran, M., S. P. Nunes, X. Qiu, H. Yu, and K.-V. Peinemann, (2014) “Isoporous PS-b-PEO ultrafiltration membranes via self-assembly and water-induced phase separation,” Journal of Membrane Science, vol. 453, pp. 471-477.
[94] Sun, A. C., W. Kosar, Y. Zhang, and X. Feng, (2013) “A study of thermodynamics and kinetics pertinent to formation of PVDF membranes by phase inversion,” Desalination, vol. 309, pp. 156-164.
[95] Hołda, A. K. and I. F. Vankelecom, (2015) “Understanding and guiding the phase inversion process for synthesis of solvent resistant nanofiltration membranes,” Journal of Applied Polymer Science, vol. 132.
[96] Holda, A. and I. Vankelecom, (2012) “Influence of Low and High Molecular Weight Additives in the Synthesis of sRNF-Membranes Via Phase Inversion,” Procedia Engineering, vol. 44, pp. 1356-1357.
[97] Hendrix, K., S. Vandoorne, G. Koeckelberghs, and I. F. Vankelecom, (2014) “SRNF membranes for edible oil purification: Introducing free amines in crosslinked PEEK to increase membrane hydrophilicity,” Polymer, vol. 55, pp. 1307-1316.
[98] Zhang, H., H. Zhang, X. Li, Z. Mai, and J. Zhang, (2011) “Nanofiltration (NF) membranes: the next generation separators for all vanadium redox flow batteries (VRBs)?,” Energy Environ. Sci., vol. 4, pp. 1676-1679.
[99] Hołda, A. K. and I. F. Vankelecom, (2014) “Integrally skinned PSf-based SRNF-membranes prepared via phase inversion—Part A: Influence of high molecular weight additives,” Journal of Membrane Science, vol. 450, pp. 512-521.
 [100] Riyasudheen, N. and A. Sujith, (2012) “Formation behavior and performance studies of poly (ethylene-co-vinyl alcohol)/poly (vinyl pyrrolidone) blend membranes prepared by non-solvent induced phase inversion method,” Desalination, vol. 294, pp. 17-24.
[101] Naim, R., A. F. Ismail, and A. Mansourizadeh, (2012) “Effect of non-solvent additives on the structure and performance of PVDF hollow fiber membrane contactor for CO 2 stripping,” Journal of Membrane Science, vol. 423, pp. 503-513.
[102] Sun, S.-P., S.-Y. Chan, and T.-S. Chung, (2015) “A slow–fast phase separation (SFPS) process to fabricate dual-layer hollow fiber substrates for thin-film composite (TFC) organic solvent nanofiltration (OSN) membranes,” Chemical Engineering Science, vol. 129, pp. 232-242.
[103] Ma, Y., F. Shi, Z. Wang, M. Wu, J. Ma, and C. Gao, (2012) “Preparation and characterization of PSf/clay nanocomposite membranes with PEG 400 as a pore forming additive,” Desalination, vol. 286, pp. 131-137.
[104] Hu, T., G. Dong, H. Li, and V. Chen, (2014) “Effect of PEG and PEO− PDMS copolymer additives on the structure and performance of Matrimid® hollow fibers for CO 2 separation,” Journal of Membrane Science, vol. 468, pp. 107-117.
[105] Hendrix, K., G. Koeckelberghs, and I. F. Vankelecom, (2014) “Study of phase inversion parameters for PEEK-based nanofiltration membranes,” Journal of Membrane Science, vol. 452, pp. 241-252.
[106] Yang, W., J. Zhang, and Y. Wang, (2013) “Charged membranes prepared by SPEEK of very low degree of sulfonation,” Journal of Applied Polymer Science, vol. 128, pp. 2875-2883.
[107] Dohrn, W., R. Buettner, I. Notz, G. Werner, C. Knobelsdorf, E. Herrmann, et al., “extruding a solution of cellulose in a hydrous tertiary amine oxide, stretching the extrudate in a non-precipitating medium to produce formed materials, precipitating in an aqueous or alcoholic bath, adding a solution of a superabsorbant polymer and extruding; high retention capacity for aqueous liquids,” ed: Google Patents, 2006.
[108] Vandezande, P., L. E. Gevers, P. A. Jacobs, and I. F. Vankelecom, (2009) “Preparation parameters influencing the performance of SRNF membranes cast from polyimide solutions via SEPPI,” Separation and Purification Technology, vol. 66, pp. 104-110.
[109] Amirilargani, M., E. Saljoughi, T. Mohammadi, and M. Moghbeli, (2010) “Effects of coagulation bath temperature and polyvinylpyrrolidone content on flat sheet asymmetric polyethersulfone membranes,” Polymer Engineering & Science, vol. 50, pp. 885-893.
[110] Schäfer, A. I., A. G. Fane, and T. D. Waite, Nanofiltration: principles and applications: Elsevier, 2005.
[111] Vanherck, K., P. Vandezande, S. O. Aldea, and I. F. Vankelecom, (2008) “Cross-linked polyimide membranes for solvent resistant nanofiltration in aprotic solvents,” Journal of Membrane Science, vol. 320, pp. 468-476.
[112] Fang, B., K. Pan, Q. Meng, and B. Cao, (2012) “Preparation and properties of polyimide solvent‐resistant nanofiltration membrane obtained by a two‐step method,” Polymer International, vol. 61, pp. 111-117.
[113] Siddique, H., E. Rundquist, Y. Bhole, L. Peeva, and A. Livingston, (2014) “Mixed matrix membranes for organic solvent nanofiltration,” Journal of Membrane Science, vol. 452, pp. 354-366.
[114] Lind, M. L., D. Eumine Suk, T.-V. Nguyen, and E. M. Hoek, (2010) “Tailoring the structure of thin film nanocomposite membranes to achieve seawater RO membrane performance,” Environmental science & technology, vol. 44, pp. 8230-8235.
[115] Hermans, S., H. Mariën, C. Van Goethem, and I. F. Vankelecom, (2015) “Recent developments in thin film (nano) composite membranes for solvent resistant nanofiltration,” Current Opinion in Chemical Engineering, vol. 8, pp. 45-54.
[116] Vanherck, K., G. Koeckelberghs, and I. F. Vankelecom, (2013) “Crosslinking polyimides for membrane applications: a review,” Progress in polymer science, vol. 38, pp. 874-896.
[117] Ismail, A. F., K. C. Khulbe, and T. Matsuura, “Membrane Fabrication/Manufacturing Techniques,” in Gas Separation Membranes, ed: Springer, 2015, pp. 193-220.
[118] Lau, W. J., A. F. Ismail, N. Misdan, and M. A. Kassim, (2012) “A recent progress in thin film composite membrane: a review,” Desalination, vol. 287, pp. 190-199.
[119] Cadotte, J. E., “Reverse osmosis membrane,” ed: Google Patents, 1981.
[120] Zuiderveld, K., “Contrast limited adaptive histogram equalization,” in Graphics gems IV, 1994, pp. 474-485.
[121] Sun, W., T. Chen, C. Chen, and J. Li, (2007) “A study on membrane morphology by digital image processing,” Journal of Membrane Science, vol. 305, pp. 93-102.
[122] Otsu, N., (1975) “A threshold selection method from gray-level histograms,” Automatica, vol. 11, pp. 23-27.
[123] Lai, Z., G. Bonilla, I. Diaz, J. G. Nery, K. Sujaoti, M. A. Amat, et al., (2003) “Microstructural optimization of a zeolite membrane for organic vapor separation,” Science, vol. 300, pp. 456-460.
[124] Wegner, K., J. Dong, and Y. Lin, (1999) “Polycrystalline MFI zeolite membranes: xylene pervaporation and its implication on membrane microstructure,” Journal of membrane science, vol. 158, pp. 17-27.
[125] Kesting, R., (1973) “Concerning the microstructure of dry‐RO membranes,” Journal of Applied Polymer Science, vol. 17, pp. 1771-1785.
[126] Rahimpour, A., S. S. Madaeni, M. Jahanshahi, Y. Mansourpanah, and N. Mortazavian, (2009) “Development of high performance nano-porous polyethersulfone ultrafiltration membranes with hydrophilic surface and superior antifouling properties,” Applied Surface Science, vol. 255, pp. 9166-9173.
[127] S., M. Jahanshahi, and A. Rahimpour, (2013) “Optimization of TiO 2 modified poly (vinyl alcohol) thin film composite nanofiltration membranes using Taguchi method,” Desalination, vol. 315, pp. 107-114.
[128] Jannatduost, E., A. Babaluo, F. Abbasi, M. A. Ardestani, and M. Peyravi, (2010) “Surface modification of nanocomposite ceramic membranes by PDMS for condensable hydrocarbons separation,” Desalination, vol. 250, pp. 1136-1139.
[129] Ardestani, M. A., A. Babaluo, M. Peyravi, M. R. Aghjeh, and E. Jannatdoost, (2010) “Fabrication of PEBA/ceramic nanocomposite membranes in gas sweetening,” Desalination, vol. 250, pp. 1140-1143.
[130] Jannatdoust, E., A. Babaluo, F. Abbasi, M. Akhfash Ardestani, and M. Peyravi, (2012) “A new technique for preparation of PDMS/ceramic nanocomposite membrane for gaseous hydrocarbons separation,” Journal of Applied Polymer Science, vol. 126, pp. 1077-1087.
[131] Perrin-Sarazin, F., M.-T. Ton-That, M. Bureau, and J. Denault, (2005) “Micro-and nano-structure in polypropylene/clay nanocomposites,” Polymer, vol. 46, pp. 11624-11634.
[132] Jafari, M., J. M. Roshandeh, and P. Pouresmail, “ISPST2012, Amirkabir University of Technology, Tehran, Iran, 21-25 October 2012,”
[133] Tiraferri, A., N. Y. Yip, W. A. Phillip, J. D. Schiffman, and M. Elimelech, (2011) “Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure,” Journal of Membrane Science, vol. 367, pp. 340-352.
[134] Pinnau, I. and W. J. Koros, (1991) “Structures and gas separation properties of asymmetric polysulfone membranes made by dry, wet, and dry/wet phase inversion,” Journal of applied polymer science, vol. 43, pp. 1491-1502.
[135] Wei, J., C. Qiu, C. Y. Tang, R. Wang, and A. G. Fane, (2011) “Synthesis and characterization of flat-sheet thin film composite forward osmosis membranes,” Journal of Membrane Science, vol. 372, pp. 292-302.
[136] Vatanpour, V., S. S. Madaeni, A. R. Khataee, E. Salehi, S. Zinadini, and H. A. Monfared, (2012) “TiO 2 embedded mixed matrix PES nanocomposite membranes: Influence of different sizes and types of nanoparticles on antifouling and performance,” Desalination, vol. 292, pp. 19-29.
[137] Pourjafar, S., A. Rahimpour, and M. Jahanshahi, (2012) “Synthesis and characterization of PVA/PES thin film composite nanofiltration membrane modified with TiO 2 nanoparticles for better performance and surface properties,” Journal of Industrial and Engineering Chemistry, vol. 18, pp. 1398-1405.
[138] Niksefat, N., M. Jahanshahi, and A. Rahimpour, (2014) “The effect of SiO 2 nanoparticles on morphology and performance of thin film composite membranes for forward osmosis application,” Desalination, vol. 343, pp. 140-146.
[139] Peyki, A., A. Rahimpour, and M. Jahanshahi, (2014) “Preparation and characterization of thin film composite reverse osmosis membranes incorporated with hydrophilic SiO 2 nanoparticles,” Desalination.
[140] Vandezande, P., X. Li, L. E. M. Gevers, and I. F. J. Vankelecom, 3/20/ (2009) “High throughput study of phase inversion parameters for polyimide-based SRNF membranes,” Journal of Membrane Science, vol. 330, pp. 307-318.
[141] Figoli, A., G. De Luca, E. Longavita, and E. Drioli, (2007) “PEEKWC capsules prepared by phase inversion technique: a morphological and dimensional study,” Separation Science and Technology, vol. 42, pp. 2809-2827.
[142] Vandezande, P., X. Li, L. E. Gevers, and I. F. Vankelecom, (2009) “High throughput study of phase inversion parameters for polyimide-based SRNF membranes,” Journal of Membrane Science, vol. 330, pp. 307-318.
[143] Cano-Odena, A., P. Vandezande, K. Hendrix, R. Zaman, K. Mostafa, W. Egger, et al., (2009)“Probing the molecular level of polyimide-based solvent resistant nanofiltration membranes with positron annihilation spectroscopy,” The Journal of Physical Chemistry B, vol. 113, pp. 10170-10176.
[144] Vanherck, K., I. Vankelecom, and T. Verbiest, (2011) “Improving fluxes of polyimide membranes containing gold nanoparticles by photothermal heating,” Journal of Membrane Science, vol. 373, pp. 5-13.
[145] Jansen, J. C., S. Darvishmanesh, F. Tasselli, F. Bazzarelli, P. Bernardo, E. Tocci, et al., (2013) “Influence of the blend composition on the properties and separation performance of novel solvent resistant polyphenylsulfone/polyimide nanofiltration membranes,” Journal of Membrane Science, vol. 447, pp. 107-118.
[146] Vanherck, K., T. Verbiest, and I. Vankelecom, (2011) “Comparison of Two Synthesis Routes to Obtain Gold Nanoparticles in Polyimide,” The Journal of Physical Chemistry C, vol. 116, pp. 115-125.