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Abstract 
Fifty years ago Warren and Root have introduced the shape factor. This fundamental parameter for 

modeling of naturally fractured reservoirs has been discussed stormily ever since. Different definitions 
for shape factor have been suggested which all of them are heuristically based. Recently, Heinemann 
and Mittermeir mathematically derived - based on the dual-continuum theorem assuming pseudo-steady 
state condition- a general and proper form of the shape factor formula which can be simplified to the 
previously published shape factor definitions. This paper discusses the practical relevance of the 
Heinemann-Mittermeir formula. Its difference to the most commonly used Kazemi et al. formula is its 
demonstration by fine-scale single matrix block simulation. Furthermore, it is shown that the generally 
applied isotropy assumption can lead to significantly wrong results. Consequently, the generalized 
Heinemann-Mittermeir shape factor formula is recommended to be routinely practiced in the industry 
for more accurate results. The paper tries to present a proper realization of the nature of the shape factor 
as well as presentation of detailed mathematical and practical approaches for measuring all the required 
values in order to determine the shape factor for individual matrix rock pieces from outcrops of 
fractured formations. Performing those measurements routinely is regarded as essential parameter for its 
usability. 
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Introduction 
     The proper description of the recovery 
mechanisms of naturally fractured 
reservoirs is a challenging task. Barenblatt 
et al. [1] introduced the first dual-continuum 
concept which is widely used nowadays. In 
their model, most of the fluid is stored in 
matrix blocks of relatively low 
permeability, km, whereas the reservoir-
scale permeability is due to an 
interconnected network of fractures. The 
fractures are not modeled explicitly, but are 
treated as a homogenized continuum, 
having the permeability of kf. Fluid transfer 
between the fracture network and the matrix 
blocks at a given location is assumed to be 
proportional to the local difference between 
the fracture potential (Φf) and the average 
potential of the connected matrix blocks 
(Φm). Additionally, the volumetric fracture-
matrix flux per unit volume of the fracture 
continuum is assumed to be proportional to 
the matrix permeability (km), inversely 
proportional to the fluid viscosity (μ) and to 
a parameter known as the shape factor (σ) as 
shown in Eq.(1): 

 
(1) 

 

     The shape factor has the unit of [L-2]. 
Barenblatt et al. [1] did not discuss the 
physical meaning of the shape factor, other 
than to mention that it was inversely 
proportional to the square of some 
“characteristic length” of the matrix block. 
Since then, numerous equations for 
calculation of the shape factor have been 
proposed for various block shapes. The 
most commonly assumed shape has 
probably been a cube of length L. For 
cubical blocks, Warren and Root [2], based 
on an obscure derivation suggested the 
shape factor as σ=60/L2. Kazemi et al.  [3] 
suggested σ=12/L2 for shape factor which is 
based on a finite-difference approximation 
to the flow equations with the entire matrix 
block represented by a single finite-
difference cell. Coats [4] suggested the 
value σ=24/L2 for shape factor calculation. 
Quintard and Whittaker [5] used "volume 
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averaging" to conclude that  shape factor is 
equal to 49.62/L2. 
     Zimmerman et al. [6] used Fourier 
analysis with transient flow assumption and 
derived the shape factor as σ=3π2/L2. This 
value was confirmed by Lim and Aziz [13], 
and was re-derived by Mathias and 
Zimmerman [7] in the Laplace domain. 
Kazemi, Gilman and Elsharkawy (KGE)  [8] 
suggested a generalized pseudo-steady state 
shape factor valid for all possible irregular 
matrix block shapes. Heinemann-Mittermeir 
[9] used a control volume finite-difference 
discretization on anisotropic dual continuum 
of irregular shape, and generalized the KGE  
[8] shape factor and mathematically proved 
that it is exact under pseudo-steady state 
condition for anisotropic matrix blocks as 
well. 
     The wide range of the values that have 
been proposed for the shape factor of a 
cubical block can in part, be explained by 
the fact that, as have been known for many 
decades (cf., de Swaan [10]), Eq.(1) is only 
accurate in the pseudo-steady state regime.  
Since Eq.(1) is not valid over all times, 
there is no unambiguous way to define the 
most appropriate value for σ. De Swaan [11] 
proposed that for the case of a step-change 
in the fracture pressure, σ can be chosen to 
render Eq.(1) accurately during the time in 
which the (mean) pressure change in the 
matrix block has attained 50% of its 
eventual value. This approach has some 
practical advantages, but causes the model 
to no longer be asymptotically accurate at 
large times. 
     In this paper, the most widely used shape 
factor after KGE [8] is studied for a matrix 
block of anisotropic permeability to 
demonstrate the effects of anisotropy on the 
matrix-fracture interaction. The output will 
be shown that this assumption can 
considerably affect on the results. 
Therefore, it is concluded that the 
anisotropy has to be taken into account for a 
proper forecast of the matrix-fracture 
interflow and is recommended that 
Heinemann-Mittermeir [9] shape factor 
which is a mathematically derived formula 

which generalizes the KGE [8] shape factor 
for anisotropic rocks, should be used. 
Moreover, detailed mathematical methods 
to measure all the parameters required for 
calculation of the Heinemann-Mittermeir  
[9] shape factor of any piece of rock or for 
outcrops of fractured formations is 
described. Furthermore, a simplified more 
practical method for estimating these 
parameters from outcrops is presented that 
can be used in large-scale field studies. 
 

Theory 
Pseudo-steady state vs. transient 
     In small-scale laboratory experiments 
and measurements, the fluid transfer 
between the matrix and the fracture is 
affected by the transient period, causing 
different results from when considering 
pseudo-steady behavior. However, as 
discussed and stated by Sarma and Aziz 
[12]: “The shape factor converges 
asymptotically to the pseudo-steady state 
shape factor for dimensionless times greater 
than 0.1, which in typical reservoirs, the real 
time equivalent to this is usually very small 
(e.g. in the scale of a few hours to just a few 
days). Therefore it is often justified to only 
use the pseudo-steady state shape factor. 
The transient period can be significant in 
transient well tests, or in very tight gas 
reservoirs.” This means that in practical 
field studies, where the time-steps are 
several days, the transient period would not 
have any effect on the result, and the 
pseudo-steady assumption accurately 
describes the conditions of the system 
(much less CPU-intensively). Therefore, in 
most of the industrial reservoir simulators, 
pseudo-steady state shape factors, such as 
KGE, is used. Moreover, as the term “shape 
factor” semantically suggests, it is a factor 
based on the shape (geometry) of the 
system. Therefore, it should necessarily be 
only dependent on the shape of the matrix 
block (and connectivity to the surrounding 
fractures).  
     However, some authors have considered 
the transient flow between matrix and 
fracture (which leads to shape factors that 
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change in time) and used the term “time-
dependent shape factor” which is 
semantically incorrect as the “shape” of the 
system which does not change in time and 
therefore it is expected that the shape factor 
remains constant during the time too. The 
pseudo-steady state assumption, on the 
other hand, leads to a constant parameter for 
the geometry function i.e. “shape factor”. 
     It is noteworthy that the mentioned time-
dependent shape factors are not meant to 
consider the effects of changes in the 
fracture network (e.g. changes in fracture 
connectivity); but they actually try to reflect 
the effects of transient state on the transfer 
function as a part of the shape factor. 
However, these effects actually should be 
accounted for the potential difference term 
which has the transfer function. Wherever 
they actually belong to, or can be ignored in 
full field cases, they would anyway 
converge asymptotically to the pseudo-
steady stated values for larger time steps. 
 

Permeability anisotropy 
     KGE [8] introduced a generalized shape 
factor for matrix blocks of any shape, with 
the assumption of pseudo-steady state and 
isotropic permeability. Heinemann and 
Mittermeir [9] mathematically derived the 
KGE shape factor formula and moreover 
generalized it also for anisotropic cases 
under pseudo-steady state.  
     Unlike the pseudo-steady state 
assumption (which does not have any 
practical effect in the full field studies), the 
isotropic-permeability assumption that 
many authors (cf. [1-4], [6-8], [10-11], [13]) 
have considered, can considerably affect the 
full field model behavior. 
     It should be mentioned that in this paper, 
the matrix block’s permeability and its 
anisotropy is being discussed and the matrix 
simulation cells that are used in the 
simulation model is not being considered. In 
the other words, even in the dual-porosity 
single-permeability model (in which the 
matrix cells do not interact with their matrix 
neighbors), in order to transfer fluid to its 
fracture neighbor, a permeability value 

greater than zero needs to be assigned to the 
matrix block as the matrix permeability, km, 
in the definition of the conventional transfer 
function of Eq.(1). This permeability has to 
be specified for the matrix block to 
calculate the matrix-fracture transfer 
regardless the reservoir model (dual- or 
single-permeability). The above mentioned 
permeability is considered isotropic anyway 
in the conventional transfer function. To 
understand the differences more clearly, an 
example from what ECLIPSE [14] reservoir 
simulator done by default is explained: In a 
dual-permeability model, the transfer term 
(Eq.(1)) is calculated using the value of the 
x-direction permeability of the matrix cell, 
even if the matrix cell has different 
permeability values in other directions. The 
anisotropic permeability values would only 
be used when calculating the matrix-matrix 
transfer is desired, but for the matrix-
fracture transfer term calculation, only the 
x-direction permeability value would be 
considered as if it were isotropic. 
     In this study, a method to measure the 
anisotropic permeability tensor on outcrops 
of reservoir formations is presented, and the 
effect of considering or ignoring the 
anisotropy in the reservoir behavior is 
discussed. 
 

Shape vs. shape factor 
     The shape factor is generally based on 
the surface-to-volume ratio of the model as 
introduced by Barker [15]: 
 

(2) 

     
     where Fs is the shape function, a is the 
characteristic length, Vm is the volume, Am is 
the surface of the matrix block and α is a 
dimensionless parameter. This means that 
the flow behavior of the model depends not 
really on the shape, but on its surface-to-
volume ratio. Consequently, if the surface-
to-volume ratios of two different matrix 
blocks of different shapes are the same, the 
matrix-fracture flow will be the same and as 
a result the driving forces will also the 
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triangles to calculate the surface area of the 
object. 
 

 
Figure 3: Measuring the surface area and volume 

of an irregular shape 
 
Measuring the volume of the block 
     The corner points of Figure 3 can be 
used to break the irregular shape to 3D-
polygons (such as pyramids) and easily 
calculate the total volume of the block (Vm) 
by summing the volumes of these polygons 
up. 
 

Finding the centroid of the block 
     The centroid point of the matrix block 
shape can be calculated from the positions 
of the corner points (in Figure 3): 

(6) 

     where cr


 is the position vector of the 

centroid, n is the total number of corner 
points and ir


is the position vector of each 

corner point of the block.  
 

Finding the unit normal vectors of each 
surface of the block 
     Three arbitrary points are chosen on the 
desired surface: O(ox, oy, oz), A(ax, ay, az) 
and B(bx, by, bz) as shown in Figure 4. The 
unit normal vector n̂  can be calculated from 
the cross product vector of the two vectors 

 zzyyxx o - a ,o - a ,o - aOA  and 

 zzyyxx o - b ,o - b ,o - bOB divided by the 

length of the product as shown in Eq.(7): 
 

(7) 

 
 
 
 
 
 
 
 

 

 

 

 

Figure 4: Finding the unit normal vector of the 
surface 

 
Surface distance from the centroid 
     The distance of a point to a surface can 
be calculated from Eq.(8) (Wolfram 
MathWorld [17]): 

(8) 

     Where d is the distance of the surface to 
the centroid, n̂  is the unit normal vector of 
the plane, Or


 is the position vector of any 

point on the surface and cr


 is the centroid’s 

position vector. 
 

Permeability tensor measurement 
     In this section, it is described how to find 
the principle permeability direction which 
yields the coordinate system in which the 
permeability anisotropy tensor is diagonal. 
Measuring the permeability tensor is quite a 
challenging task which many authors such 
as Lishman [18], Mousatov et al. [19], 
Durlofsky [20], Rose [21], Walter [22] or 
Weitzenböck et al. [23] have tried to 
propose different methods or to design 
instruments to measure it.  
     In this paper a method which was 
suggested by Asadi et al. [24] is briefly 
explained. A sample from the rock that is 
large enough to eliminate the end-effect is 
shaped as described by Asadi et al. [24] 
(which is the 3D extension of  Rose [21] 
method for 2D): 
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(12) 

 
(13) 

 
 

(14) 

 
 

(15) 

 
 
 
 
 

    Eqs.(9-(15) altogether contain 18 
unknowns and 18 equations and by solving 
them, all the permeability tensor elements 
can be calculated as explained by Asadi et 
al. [24]. 
 

Principle permeability coordinate system 
and permeability tensor diagonalization 
     Since the permeability tensor is1 both 
symmetric and positive definite2, it is 
always diagonalizable [26].  
     In order to diagonalize the permeability 
tensor (obtained from any method), its 

eigenvectors of 321 ,, XXX


, respectively for 

the eigenvalues of kx, ky and kz should be 
calculated. Eq.(16)  is the definition of 
eigenvalues and eigenvectors for the 
permeability tensor: 
 
 

 
 
 

(16) 
 
 
 
 

                                                 
1http://en.wikipedia.org/wiki/Permeability_(earth_sci
ences) 
2 Positive definite matrix: a matrix M such that 
xTMx > 0 for all non-zero x. 

     where E is the matrix comprised of 

eigenvectors of k  written as column 
vectors and put side by side.  

     As mentioned, k  is positive definite, 
therefore E is an orthonormal3 matrix and 
represents simply a rotation transform 
(Anton and Rorres [26]). Since kx, ky, kz are 
the eigenvalues of the permeability tensor, 
Eq.(17)  and as a result, Eq.(18) are always 
correct by definition: 
 

(17) 
 
 
 

 
 
 
 
                                                                (18) 

where 



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

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z

y

x

k

k

k

k

00

00

00

is the diagonalized 

permeability tensor.  
     This expression helps describe the 
procedure of matrix diagonalization in the 
following sequence of operations (reading 
Eq.(18) from the right): 
 

1. At first multiplying by E-1. Think of this 
as performing a linear change of the 
coordinates, i.e. changing the coordinates 
to some special coordinate system called 
the “principle permeability coordinate 
system”. 

2. As the Second step multiplying by k . But 
this is a particularly easy matrix to 
multiply with, since the coordinates do 
not mix: it means that each coordinate 
gets stretched or squeezed by just one of 

the eigenvalues of k . 
3. Finally, going back to the global 

coordinates, multiplying by the inverse 
of E-1, namely E. 

 

                                                 
3 Orthonormal matrix: matrix M where MTM = I. 
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     Note that the order of choosing the 
eigenvalues as kx, ky or kz is not important, 
since the rotation matrix is created by the 
corresponding eigenvectors in the same 
order as the selected eigenvalues. In the 
other words, the values of the diagonalized 
permeability tensor in the transformed 
coordinate system will be always the same, 
regardless of the order of selection of the 
eigenvalues. 
 
 

 
Figure 7: Principle permeability coordinate 

system 
 
     Applying the rotation transform of E-1 to 
the global coordinate system, the principle 
permeability coordinate system (X’-Y’-Z’) 
can be calculated as shown in Figure 7 with 
the dashed arrows. In this coordinate 
system, the diagonalized permeability 
tensor can be directly used in calculations. 
 

Equivalent isotropic permeability and 
normalized anisotropy tensor 
     Muskat [27] introduced the term 
“equivalent isotropic permeability” to 
calculate the isotropic permeability in case 
of having anisotropic permeability tensor 
(to be used in calculations and simulations 
that are based on the isotropy assumption). 
This term is nothing more than the 
geometric mean of the directional 
permeability values as shown in Eq.(19): 

 (19) 
 
     This value can be used to normalize the 
permeability tensor to a dimensionless 
tensor that represents the anisotropy of the 

medium which is called “normalized 

anisotropy tensor”, k̂ , which represents the 
anisotropy of the rock: 
 

 (20) 
 
 

 
Permeability and shape factor in the 
transfer term 
      As shown in Eq.(1), the dimension of 
the shape factor is [m-2] which does not 
consider the permeability. Therefore, 
sometimes instead of considering the shape 
factor and permeability separately, the term 
σk with the dimension of [D/m2] (Darcy per 
square meter) is considered as a single 
entity in the transfer term to be able to have 
a permeability-dependent term as mentioned 
in the Eq.(4). 
 

Calculating the representative cuboid 
     The representative cuboids which has the 
same shape factor as the irregularly shaped 
block can be calculated assuming lx = ly, and 
lz = the mean height of the original block (to 
keep the effects of gravity, as the height-
dependent parameter, the same between the 
cuboid and the original rock). The values 
can be easily calculated for a cuboid from 
Eq.(3) for KGE shape factor or Eq.(4) for 
Heinemann-Mittermeir shape factor: 

(21) 
 
 

 (22) 
 
 
 
 
 
Studying the effect of permeability 
anisotropy 
The numerical model 
     In order to study the flow behavior of the 
matrix block, a mathematical model was 
created to simulate the laboratory 
experiment of submerging a single matrix 
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block in a fluid (either water or gas) under 
different conditions. 
     The model inputs the shape factor and 
internally sets up the representative cuboid 
(which has the same flow behavior as the 
irregularly shaped matrix block) using 
either Eq.(21) or Eq.(22) as desired. The 
matrix block (representative cuboid) is then 
discretized to small simulation cells 
(forming the matrix domain, red cells in 
Figure 8) which are surrounded by fracture 
cells (forming the fracture domain, green 
cells in Figure 8). Both domains are treated 
as two single-porosity volume-regions that 
can interact with each other in the 
conventional single-porosity manner. 
     The only difference between the two 
domains is that the matrix domain has the 
endpoints and rock properties of the matrix 
domain and the fracture domain are those of 
the fracture domain (i.e. straight-line 
relative permeabilities and zero capillary 
pressure). Only the fluid content of the 
matrix domain is of interest and the fracture 
domain acts only as a constant-pressure 
boundary with constant fluid content: either 
is fully gas-filled or is fully water-filled to 
represent submerging the matrix block in 
gas or water respectively. The matrix 
domain initially has the maximum oil 
saturation. 
 

 
Figure 8: Single Matrix Block model          

 (a quarter of the actual matrix block) 
 

     The amount of oil that flows out of the 
matrix domain to the fracture domain is 
collected at the end of each time-step and 
after being divided by the matrix domain 
initial oil volume, is reported as the 
recovery factor for that time-step. The 
entered oil to the fracture domain is taken 
out of the system, to keep the fracture 
saturation constant in time. 
     Since the matrix block is considered to 
be homogeneous, the flow will be 
symmetrical and it will be enough that the 
calculations are performed on a quarter of 
the model as shown in Figure 8 and 
assigned to the other three quarters as well. 
This makes the run about four times more 
efficient (which is very beneficial since the 
time-steps may need to be small due to the 
small scale of the model). 
 

The test cases 
     In order to demonstrate the effect of 
permeability anisotropy on matrix-fracture 
interaction, an irregularly shaped piece of 
rock (assuming bulk homogeneity) is 
modeled and its shape factor is calculated 
using KGE formula (Eq.(3)) and the 
representative cuboid is calculated (using 
Eq.(21)). 
     The measured shape factor of this piece 
of rock and its calculated representative 
cuboid size are as follows: 
 
 
 
 
     Two cases are considered with different 
permeability anisotropy tensors: The 
permeability tensor for Case 1 is: 
 
 
 
 
 
And the permeability tensor for Case 2 is: 
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     As can be observed, each scenario 
presents a completely different trend of 
recovery: 55% recovery of the matrix oil 
content for Case 1, takes nearly 8000 days 
(~22 years) with isotropy assumption while 
it takes about 21000 days (~58 years) 
considering the anisotropy. For Case 2 it 
takes about 3000 days (~8 years) with 
isotropy assumption and about 9000 days 
(~24 years) with anisotropy assumption. 
     The difference in recovery time of 55% 
between the isotropic and anisotropic 
scenarios for Case 1 is ~36 years and for 
Case 2 is ~16 years which are quite 
remarkable differences in estimation of the 
recovery time from a small matrix block, 
with the same initial and boundary 
conditions only as a result of considering or 
ignoring the anisotropy. 
     It is also observable that all the curves 
start at the same obvious recovery value of 
zero (while the initial conditions are the 
same) but also end at the same common 
recovery value of 64.68% as the ultimate 
recovery. The reason is that the ultimate 
recovery from the matrix block only 
depends on the driving mechanisms in 
action and the saturation endpoints, which 
are the same in all scenarios and are not 
dependent on the permeability. In the other 
words, all scenarios will ultimately produce 
the same amount of oil but with different 
trends and time scale. However, it is 
essential that this trend is known as accurate 
as possible to be able to make appropriate 
plans for the production from naturally 
fractured reservoirs. 
 

Practical simplifications 
     The presented method to measure the 
shape factor parameters from outcrops, is 
mathematically accurate, but may be 
considered too difficult to manually practice 
on a large scale/quantity. 
     However, there are software programs 
that help make 3-dimensional models from 
the pieces of rock just by analyzing the 
pictures in different angles from the rock 
(such as 3D Software Object Modeller Pro 
[28]). These 3D models can be then used to 

easily determine the surface area, centroid 
and the distance of each face to the centroid 
and to ultimately calculate the shape factor 
from Eq.(4). 
     An alternative practical method is to 
express the Heinemann-Mittermeir [9] 
shape factor formula in an approximated 
form to facilitate intuitively estimation of 
the parameters as shown in Eq. (23): 

 (23) 
 
 
   where Vm is the volume of the matrix 
block, AK is the projected area of the matrix 
block on a plane orthogonal to the 
maximum, minimum or intermediate 
permeability directions and dK is half of the 
mean length of the matrix block (LK) in that 
direction. Figure 10 shows the schematic 
representation of AKmax, the projected area 
and LKmax, the mean length of the matrix 
block in the direction of maximum 
permeability. 
     It is possible to estimate AK and LK as 
well as the matrix block’s volume, Vm, 
intuitively after a few measurements, which 
makes onsite utilizing of this shape factor 
formula more practical. The principle 
permeability direction may be estimated 
itself by close inspection of the formation 
sedimentation. 
     The permeability values can be measured 
in lab for some cores and averaged for the 
formation. 
     Note that in Eq. (23), the normalized 
directional permeability values are not 
explicitly observable; as their effect is 
already included in the term AK/dK (i.e. 
since this term is determined in the principle 
permeability directions, they are dependent 
on the anisotropic permeability tensor). 
     In Eq. (23), the term σHM is calculated 
rather than σHMkm as in Eq.(4), and 
therefore, in order to calculate the transfer 
term, the average permeability km has to be 
multiplied (by the shape factor value) as 
well; however, as already mentioned, using 
the equivalent isotropic permeability here, 
does not undermine the matrix anisotropy, 
since the shape factor is already calculated 
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considering the normalized permeability 
tensor i.e. in the principle permeability 
direction. 
     Such simplifications make it practical to 
use field outcrop investigations to measure 
the anisotropic shape factor more accurately 
than what is currently being used, but still 
not as time-consuming and as accurate as 
measuring all the parameters in the lab for 
every piece of rock, as was described earlier 
in this paper (which makes it impractical on 
a large scale). 
 

Conclusions 
     This study, using four different scenarios 
which were identical except for 
permeability tensor while follow completely 
different trends of production, demonstrates 
that although permeability anisotropy is not 
considered routinely in petroleum 
engineering studies, it can play a significant 
role in depletion trend of matrix blocks in 
naturally fractured reservoirs.  
     Therefore, use of a shape factor such as 
Heinemann-Mittermeir  which considers the 
anisotropy, also is theoretically derived and 
mathematically proven, is highly 

recommended rather than using the 
simplified, commonly used Kazemi et al. 
isotropic shape factor which can result in 
quite wrong estimations of matrix depletion 
trend. 
     Mathematical methods to determine all 
the parameters of Heinemann-Mittermeir 
shape factor for the matrix blocks of any 
shape (from the outcrops of fractured 
formations or elsewhere) were described 
and additionally, a possible simplified and 
more practical approach to intuitive 
estimation of those parameters was 
presented. It is suggested that field outcrop 
investigations should be performed for 
measuring the shape factor more accurate 
for the naturally fractured formations using 
the presented methods (especially in cases 
of high anisotropy). 
     The test cases also suggest that using the 
apparent permeability in the transfer 
function which ignores the effect of 
anisotropy yet in a higher level than the 
shape factor, can be a more serious source 
of discrepancies in the matrix-fracture 
transfer rate calculation as well. 
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