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Abstract

Fifty years ago Warren and Root have introduced the shape factor. This fundamental parameter for
modeling of naturally fractured reservoirs has been discussed stormily ever since. Different definitions
for shape factor have been suggested which all of them are heuristically based. Recently, Heinemann
and Mittermeir mathematically derived - based on the dual-continuum theorem assuming pseudo-steady
state condition- a general and proper form of the shape factor formula which can be simplified to the
previously published shape factor definitions. This paper discusses the practical relevance of the
Heinemann-Mittermeir formula. Its difference to the most commonly used Kazemi et al. formula is its
demonstration by fine-scale single matrix block simulation. Furthermore, it is shown that the generally
applied isotropy assumption can lead to significantly wrong results. Consequently, the generalized
Heinemann-Mittermeir shape factor formula is recommended to be routinely practiced in the industry
for more accurate results. The paper tries to present a proper realization of the nature of the shape factor
as well as presentation of detailed mathematical and practical approaches for measuring all the required
values in order to determine the shape factor for individual matrix rock pieces from outcrops of
fractured formations. Performing those measurements routinely is regarded as essential parameter for its
usability.
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Introduction

The proper description of the recovery
mechanisms  of  naturally  fractured
reservoirs is a challenging task. Barenblatt
et al. [1] introduced the first dual-continuum
concept which is widely used nowadays. In
their model, most of the fluid is stored in
matrix  blocks  of  relatively low
permeability, k,, whereas the reservoir-
scale permeability is due to an
interconnected network of fractures. The
fractures are not modeled explicitly, but are
treated as a homogenized continuum,
having the permeability of k. Fluid transfer
between the fracture network and the matrix
blocks at a given location is assumed to be
proportional to the local difference between
the fracture potential (@) and the average
potential of the connected matrix blocks
(®D). Additionally, the volumetric fracture-
matrix flux per unit volume of the fracture
continuum is assumed to be proportional to
the matrix permeability (k,), inversely
proportional to the fluid viscosity (x«) and to
a parameter known as the shape factor (o) as
shown in Eq.(1):
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The shape factor has the unit of [L2].
Barenblatt et al. [1] did not discuss the
physical meaning of the shape factor, other
than to mention that it was inversely
proportional to the square of some
“characteristic length” of the matrix block.
Since then, numerous equations for
calculation of the shape factor have been
proposed for various block shapes. The
most commonly assumed shape has
probably been a cube of length L. For
cubical blocks, Warren and Root [2], based
on an obscure derivation suggested the
shape factor as 0=60/L°. Kazemi et al. [3]
suggested o=12/L° for shape factor which is
based on a finite-difference approximation
to the flow equations with the entire matrix
block represented by a single finite-
difference cell. Coats [4] suggested the
value 0=24/L° for shape factor calculation.
Quintard and Whittaker [5] used "volume
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averaging" to conclude that shape factor is
equal to 49.62/L°.

Zimmerman et al. [6] used Fourier
analysis with transient flow assumption and
derived the shape factor as o=37"/L°. This
value was confirmed by Lim and Aziz [13],
and was re-derived by Mathias and
Zimmerman [7] in the Laplace domain.
Kazemi, Gilman and Elsharkawy (KGE) [8]
suggested a generalized pseudo-steady state
shape factor valid for all possible irregular
matrix block shapes. Heinemann-Mittermeir
[9] used a control volume finite-difference
discretization on anisotropic dual continuum
of irregular shape, and generalized the KGE
[8] shape factor and mathematically proved
that it is exact under pseudo-steady state
condition for anisotropic matrix blocks as
well.

The wide range of the values that have
been proposed for the shape factor of a
cubical block can in part, be explained by
the fact that, as have been known for many
decades (cf., de Swaan [10]), Eq.(1) is only
accurate in the pseudo-steady state regime.
Since Eq.(1) is not valid over all times,
there is no unambiguous way to define the
most appropriate value for o. De Swaan [11]
proposed that for the case of a step-change
in the fracture pressure, o can be chosen to
render Eq.(1) accurately during the time in
which the (mean) pressure change in the
matrix block has attained 50% of its
eventual value. This approach has some
practical advantages, but causes the model
to no longer be asymptotically accurate at
large times.

In this paper, the most widely used shape
factor after KGE [8] is studied for a matrix
block of anisotropic permeability to
demonstrate the effects of anisotropy on the
matrix-fracture interaction. The output will
be shown that this assumption can
considerably affect on the results.
Therefore, it is concluded that the
anisotropy has to be taken into account for a
proper forecast of the matrix-fracture
interflow and is recommended that
Heinemann-Mittermeir [9] shape factor
which is a mathematically derived formula

which generalizes the KGE [8] shape factor
for anisotropic rocks, should be used.
Moreover, detailed mathematical methods
to measure all the parameters required for
calculation of the Heinemann-Mittermeir
[9] shape factor of any piece of rock or for
outcrops of fractured formations is
described. Furthermore, a simplified more
practical method for estimating these
parameters from outcrops is presented that
can be used in large-scale field studies.

Theory
Pseudo-steady state vs. transient

In small-scale laboratory experiments
and measurements, the fluid transfer
between the matrix and the fracture is
affected by the transient period, causing
different results from when considering
pseudo-steady  behavior. However, as
discussed and stated by Sarma and Aziz
[12]:  “The shape factor converges
asymptotically to the pseudo-steady state
shape factor for dimensionless times greater
than 0.1, which in typical reservoirs, the real
time equivalent to this is usually very small
(e.g. in the scale of a few hours to just a few
days). Therefore it is often justified to only
use the pseudo-steady state shape factor.
The transient period can be significant in
transient well tests, or in very tight gas
reservoirs.” This means that in practical
field studies, where the time-steps are
several days, the transient period would not
have any effect on the result, and the
pseudo-steady ~ assumption  accurately
describes the conditions of the system
(much less CPU-intensively). Therefore, in
most of the industrial reservoir simulators,
pseudo-steady state shape factors, such as
KGE, is used. Moreover, as the term “shape
factor” semantically suggests, it is a factor
based on the shape (geometry) of the
system. Therefore, it should necessarily be
only dependent on the shape of the matrix
block (and connectivity to the surrounding
fractures).

However, some authors have considered
the transient flow between matrix and
fracture (which leads to shape factors that
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change in time) and used the term “time-
dependent  shape  factor” which is
semantically incorrect as the “shape” of the
system which does not change in time and
therefore it is expected that the shape factor
remains constant during the time too. The
pseudo-steady state assumption, on the
other hand, leads to a constant parameter for
the geometry function i.e. “shape factor”.

It is noteworthy that the mentioned time-
dependent shape factors are not meant to
consider the effects of changes in the
fracture network (e.g. changes in fracture
connectivity); but they actually try to reflect
the effects of transient state on the transfer
function as a part of the shape factor.
However, these effects actually should be
accounted for the potential difference term
which has the transfer function. Wherever
they actually belong to, or can be ignored in
full field cases, they would anyway
converge asymptotically to the pseudo-
steady stated values for larger time steps.

Permeability anisotropy

KGE [8] introduced a generalized shape
factor for matrix blocks of any shape, with
the assumption of pseudo-steady state and
isotropic permeability. Heinemann and
Mittermeir [9] mathematically derived the
KGE shape factor formula and moreover
generalized it also for anisotropic cases
under pseudo-steady state.

Unlike  the  pseudo-steady  state
assumption (which does not have any
practical effect in the full field studies), the
isotropic-permeability  assumption  that
many authors (cf. [1-4], [6-8], [10-11], [13])
have considered, can considerably affect the
full field model behavior.

It should be mentioned that in this paper,
the matrix block’s permeability and its
anisotropy is being discussed and the matrix
simulation cells that are used in the
simulation model is not being considered. In
the other words, even in the dual-porosity
single-permeability model (in which the
matrix cells do not interact with their matrix
neighbors), in order to transfer fluid to its
fracture neighbor, a permeability value

greater than zero needs to be assigned to the
matrix block as the matrix permeability, &,
in the definition of the conventional transfer
function of Eq.(1). This permeability has to
be specified for the matrix block to
calculate the matrix-fracture transfer
regardless the reservoir model (dual- or
single-permeability). The above mentioned
permeability is considered isotropic anyway
in the conventional transfer function. To
understand the differences more clearly, an
example from what ECLIPSE [14] reservoir
simulator done by default is explained: In a
dual-permeability model, the transfer term
(Eq.(1)) is calculated using the value of the
x-direction permeability of the matrix cell,
even if the matrix cell has different
permeability values in other directions. The
anisotropic permeability values would only
be used when calculating the matrix-matrix
transfer is desired, but for the matrix-
fracture transfer term calculation, only the
x-direction permeability value would be
considered as if it were isotropic.

In this study, a method to measure the
anisotropic permeability tensor on outcrops
of reservoir formations is presented, and the
effect of considering or ignoring the
anisotropy in the reservoir behavior is
discussed.

Shape vs. shape factor

The shape factor is generally based on
the surface-to-volume ratio of the model as
introduced by Barker [15]:

2
A
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where F is the shape function, a is the
characteristic length, V,, is the volume, 4,, is
the surface of the matrix block and a is a
dimensionless parameter. This means that
the flow behavior of the model depends not
really on the shape, but on its surface-to-
volume ratio. Consequently, if the surface-
to-volume ratios of two different matrix
blocks of different shapes are the same, the
matrix-fracture flow will be the same and as
a result the driving forces will also the
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same. The considered driving forces are
capillary imbibitions (between the fracture
and the matrix) and the gravity drainage
(which depends on the height of the matrix
block). Therefore, if the height of the blocks
is the same (to impose the same
gravitational drive), all models will have the
same shape factor, as long as their surface-
to-volume ratio is the same. This is
illustrated in Figure 1 that how an arbitrarily
shaped matrix block can have the same
shape factor as a cuboids of the same
height.
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Figure 1: Different matrix block shapes with the
same shape factor and flow behavior

This means that in order to model the
flow behavior of a matrix block of any
shape, it is possible to use a simple cuboids
(which is easier to model and simulate) with
the same “shape factor” as the irregularly
shaped matrix block. The procedure is
described later in the “Calculating the
representative cuboids” section.

Calculating the shape factor
The pseudo-steady state shape factor can
be calculated using KGE [8] formula:

1 &4,
ok =k, —» L 3
=2y 3)
where V,, 1s the volume of the matrix
block, 4; is the area of a surface open to
flow and d; is the distance from the open
surface to the centroid of the matrix block.
Note that in KGE [8] shape factor, it is
assumed that the matrix permeability (k) is
isotropic and is the same in all directions.
The pseudo-steady state shape factor can
be calculated using the Heinemann-
Mittermeir (HM) formula [9], also taking

the anisotropy into account:
Ly A

2
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where k is the permeability tensor, and
n is the unit normal vector of the surface
open to flow in addition other parameters
have been introduced previously in Eq.(3).

The parameters necessary to calculate
the shape factor for an irregularly shaped
piece of rock are described in the following
sections.

Global coordinate system

Consider a homogeneous anisotropic
matrix block of arbitrary shape. A global 3-
dimensional Cartesian coordinate system is
required to make the measurements. The
origin can be any point in space (based on
which all the distances will be measured)
and the direction of the main axes can be
also arbitrarily selected.

fe S et
rregular shape

£ 2

Figure 2: A real matrix b
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Such an arbitrary global coordinate
system and a real piece of matrix rock are
shown in Figure 2.

Surface area measurement

Heron's formula, named after Heron of
Alexandria, states that the 7 area of a
triangle with side-lengths of a, b and ¢ (as
described by Dunham [16]) is:

T = \/s(s—a)(s—b)(s—c),
s=(a+b+c)2 ®)

This formula can be used to measure the
surface of any irregular shape by masking it
with non-overlapping triangles (as shown in
Figure 3). Measuring their sides, calculating
their areas and summing them up for all the
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triangles to calculate the surface area of the
object.

2 7 e
Figure 3: Measuring the surface area and volume
of an irregular shape

] -

Measuring the volume of the block

The corner points of Figure 3 can be
used to break the irregular shape to 3D-
polygons (such as pyramids) and easily
calculate the total volume of the block (V)
by summing the volumes of these polygons

up.
Finding the centroid of the block
The centroid point of the matrix block

shape can be calculated from the positions
of the corner points (in Figure 3):

P15 ©

wlllqeré 7. is the position vector of the
centroid, n is the total number of corner
points and 7 is the position vector of each
corner point of the block.

Finding the unit normal vectors of each
surface of the block

Three arbitrary points are chosen on the
desired surface: O(ox, 0,, 0.), A(ax, a,, a:)
and B(b,, b,, b.) as shown in Figure 4. The
unit normal vector 7 can be calculated from
the cross product vector of the two vectors

a;l(ax-ox,ay-oy,az-oz) and
OB(b, -0,,b, -0,,b, -0, )divided by the
length of the product as shown in Eq.(7):

. O4AxOB

i = e ()
0OA x OB

Figure 4: Finding the unit normal vector of the
surface

Surface distance from the centroid

The distance of a point to a surface can
be calculated from Eq.(8) (Wolfram
MathWorld [17]):

d:ﬁ'(’_;o_?c) ®)
Where d is the distance of the surface to

the centroid, 7 is the unit normal vector of
the plane, 7, is the position vector of any

point on the surface and 7, is the centroid’s
position vector.

Permeability tensor measurement

In this section, it is described how to find
the principle permeability direction which
yields the coordinate system in which the
permeability anisotropy tensor is diagonal.
Measuring the permeability tensor is quite a
challenging task which many authors such
as Lishman [18], Mousatov et al. [19],
Durlofsky [20], Rose [21], Walter [22] or
Weitzenbock et al. [23] have tried to
propose different methods or to design
instruments to measure it.

In this paper a method which was
suggested by Asadi et al. [24] is briefly
explained. A sample from the rock that is
large enough to eliminate the end-effect is
shaped as described by Asadi et al. [24]
(which is the 3D extension of Rose [21]
method for 2D):
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Figure S: The first step for reshaping the cubic
sample

The cubic sample is reshaped into a
parallelepiped in three steps performed in
each direction one after another. The angle
of each outlet face of the sample is changed
so that the upper flow and the lower flow
become the same (and the inlet face angle is
also changed in parallel to the outlet face).

Figure 5 shows the first step of reshaping
the cube sample. The same procedure is also
performed on the other two directions and
ultimately the block is reshaped into a
parallelepiped as shown in Figure 6. The

plot of angle vs. ln(qti] shall produce

qbottom
the final values for the angles of each face.
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Figure 6: The final parallelepiped formed by
reshaping the cubic sample

It is expected that the direction of
pressure gradient along each side of this
parallelepiped is parallel to the flow [24],
[21]. Now three permeability measurement
experiments can be performed along each
side of the parallelepiped to measure the
pressure drop for a given flow rate and
therefore the Darcy’s flow equation is used
for that face as in Eq.(9):

_ )
o0-"vh=>
U
A N L
q, =7 k. k, k.|dp/oy
q. k, k, k.|op/oz

where the 9 permeability tensor values
are unknown. Three additional equations
come from the fact that the permeability
tensor is symmetric by the Onsager [25]
reciprocal relations. This means that:

1
k; =k,, i,je{x,y,z}. (10)

In order to calculate the remaining
unknowns, Asadi et al. [24] consider the
directions of maximum, minimum and
intermediate permeability and their angles
to the direction of pressure gradient: The
angles of the maximum permeability
direction to each component of the pressure
gradient vector are M;, M,, Mj; respectively
and for the minimum permeability direction
are mj;, my, m3 and for the intermediate
permeability direction (which is
perpendicular to both minimum and
maximum permeability directions) are
i1, 02, 13.

The principal permeability k., k), k.. of
the nine element symmetric tensor are the
eigenvalues of the following matrix (Anton
and Rorres [26]):

11
k;l kxy kxz ( )
k, k' k,|=0
kzx kzy k;l

Eq.(11) is cubic in A and has three real
roots which correspond to the three values
of kyax, kins and kypin. To solve Eq.(11) for the
principle permeability, the principle axis are
written to satisfy the following equations for
the directional cosines of the principal [24]:
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k! k., k. | cosM, (12)
k, k;' k,|cosM, | =0
k.. Kk, k;' | cos M, (13)
K% k. k.| cosm, |
k, k' k,|[cosm,|=0
k. k, k| cosm, (14)
k' k. k. |cosi |
k, k' k.. |cosi, |=0
k, k, k; |cosi | (15)

cos’ M, +cos’ M, +cos’ M, =1
2 2 2
cos“m, +cos” m, +cos” my =1

cos’ i, +cos’ i, +cos’ iy =1

Eqgs.(9-(15) altogether contain 18
unknowns and 18 equations and by solving
them, all the permeability tensor elements
can be calculated as explained by Asadi et
al. [24].

Principle permeability coordinate system
and permeability tensor diagonalization
Since the permeability tensor is' both
symmetric and positive definite’, it is
always diagonalizable [26].
In order to diagonalize the permeability
tensor (obtained from any method), its

eigenvectors of X, X,, X,, respectively for
the eigenvalues of k,, k, and k. should be
calculated. Eq.(16) is the definition of

eigenvalues and eigenvectors for the
permeability tensor:

l

KX =k X,
KX, =k, X,
KX, =kX, (16)
X, X, X
E:[qla)?za)?s]: le. Xzy. X3)
X, X, X

'http://en.wikipedia.org/wiki/Permeability (earth_sci

ences)
2 Positive definite matrix: a matrix M such that
x'Mx > 0 for all non-zero x.

where E is the matrix comprised of

eigenvectors of k' written as column
vectors and put side by side.

As mentioned, k' is positive definite,
therefore E is an orthonormal® matrix and
represents simply a rotation transform
(Anton and Rorres [26]). Since k., k,, k. are
the eigenvalues of the permeability tensor,
Eq.(17) and as a result, Eq.(18) are always
correct by definition:

k. 0 0
FE=E[0 k 0]|= (17
0 0 k
k. 0 0
K=E[0 k 0 ] E'=
0 0 %
k'=EKE™ (18)
k. 0 0
where k=| 0 k, 0 |is the diagonalized
0 0 &k

permeability tensor.

This expression helps describe the
procedure of matrix diagonalization in the
following sequence of operations (reading
Eq.(18) from the right):

1. At first multiplying by E”. Think of this
as performing a linear change of the
coordinates, i.e. changing the coordinates
to some special coordinate system called
the “principle permeability coordinate
system”.

2. As the Second step multiplying by & . But
this is a particularly easy matrix to
multiply with, since the coordinates do
not mix: it means that each coordinate
gets stretched or squeezed by just one of

the eigenvalues of k' .

3. Finally, going back to the global
coordinates, multiplying by the inverse
of E”, namely E.

® Orthonormal matrix: matrix M where M™M = I.
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Note that the order of choosing the
eigenvalues as k,, k, or k. is not important,
since the rotation matrix is created by the
corresponding eigenvectors in the same
order as the selected eigenvalues. In the
other words, the values of the diagonalized
permeability tensor in the transformed
coordinate system will be always the same,
regardless of the order of selection of the
eigenvalues.

e

4 - g %
ty coordinate

igure 7: Principl pérmablll
system

Applying the rotation transform of E” to
the global coordinate system, the principle
permeability coordinate system (X’-Y’-Z°)
can be calculated as shown in Figure 7 with
the dashed arrows. In this coordinate
system, the diagonalized permeability
tensor can be directly used in calculations.

Equivalent isotropic permeability and
normalized anisotropy tensor

Muskat [27] introduced the term
“equivalent isotropic permeability” to
calculate the isotropic permeability in case
of having anisotropic permeability tensor
(to be used in calculations and simulations
that are based on the isotropy assumption).
This term is nothing more than the
geometric mean of the directional
permeability values as shown in Eq.(19):

19
k, =3[k k. (19)

This value can be used to normalize the
permeability tensor to a dimensionless
tensor that represents the anisotropy of the

medium which 1s called “normalized

A

anisotropy tensor”, k| which represents the
anisotropy of the rock:

_ k. Jk, 0 01 0
k=kik,=| 0 k/k, 0
0 0k Jk,

Permeability and shape factor in the
transfer term

As shown in Eq.(1), the dimension of
the shape factor is [m™] which does not
consider the permeability. Therefore,
sometimes instead of considering the shape
factor and permeability separately, the term
ok with the dimension of [D/m?] (Darcy per
square meter) is considered as a single
entity in the transfer term to be able to have
a permeability-dependent term as mentioned
in the Eq.(4).

Calculating the representative cuboid

The representative cuboids which has the
same shape factor as the irregularly shaped
block can be calculated assuming /. = /,, and
I, = the mean height of the original block (to
keep the effects of gravity, as the height-
dependent parameter, the same between the
cuboid and the original rock). The values
can be easily calculated for a cuboid from
Eq.(3) for KGE shape factor or Eq.(4) for
Heinemann-Mittermeir shape factor:

21)

(22)

Studying the effect of permeability

anisotropy
The numerical model

In order to study the flow behavior of the
matrix block, a mathematical model was
created to simulate the laboratory
experiment of submerging a single matrix
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block in a fluid (either water or gas) under
different conditions.

The model inputs the shape factor and
internally sets up the representative cuboid
(which has the same flow behavior as the
irregularly shaped matrix block) using
either Eq.(21) or Eq.(22) as desired. The
matrix block (representative cuboid) is then
discretized to small simulation cells
(forming the matrix domain, red cells in
Figure 8) which are surrounded by fracture
cells (forming the fracture domain, green
cells in Figure 8). Both domains are treated
as two single-porosity volume-regions that
can interact with each other in the
conventional single-porosity manner.

The only difference between the two
domains is that the matrix domain has the
endpoints and rock properties of the matrix
domain and the fracture domain are those of
the fracture domain (i.e. straight-line
relative permeabilities and zero capillary
pressure). Only the fluid content of the
matrix domain is of interest and the fracture
domain acts only as a constant-pressure
boundary with constant fluid content: either
is fully gas-filled or is fully water-filled to
represent submerging the matrix block in
gas or water respectively. The matrix
domain initially has the maximum oil
saturation.

VOLREG

_ “'F_Frac

Figure 8: Single Matrix Block model
(a quarter of the actual matrix block)

The amount of oil that flows out of the
matrix domain to the fracture domain is
collected at the end of each time-step and
after being divided by the matrix domain
initial oil volume, is reported as the
recovery factor for that time-step. The
entered oil to the fracture domain is taken
out of the system, to keep the fracture
saturation constant in time.

Since the matrix block is considered to
be homogeneous, the flow will be
symmetrical and it will be enough that the
calculations are performed on a quarter of
the model as shown in Figure 8 and
assigned to the other three quarters as well.
This makes the run about four times more
efficient (which is very beneficial since the
time-steps may need to be small due to the
small scale of the model).

The test cases

In order to demonstrate the effect of
permeability anisotropy on matrix-fracture
interaction, an irregularly shaped piece of
rock (assuming bulk homogeneity) is
modeled and its shape factor is calculated
using KGE formula (Eq.(3)) and the
representative cuboid is calculated (using
Eq.(21)).

The measured shape factor of this piece
of rock and its calculated representative
cuboid size are as follows:

o*F =0.183/m?,

1" = 15" =6.61m

[.=7.62m, =

Two cases are considered with different

permeability  anisotropy tensors: The
permeability tensor for Case 1 is:
45 0 0
k=0 012 0 |mD=k, =04mD
0 0 0.12

And the permeability tensor for Case 2 is:

20 0 0
k= 0 20 0 \mD=k,,=1.0mD
0 0 025
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The (discretized) matrix cells are filled
with maximum oil saturation, and the
fracture cells act as a boundary condition
containing always 100% water. Due to
capillary pressure and gravity drainage, the
water enters the matrix cells and expels the
oil out to the fracture cells. The amount of
oil outflow of the matrix in each time-step is
collected from the fracture cells and after
dividing it by the initial matrix oil content,
will be reported as the recovery factor in
that time-step.

For each permeability tensor, two
scenarios for the permeability are assumed
(while all other parameters remain
identical):

1. The permeability in all directions are set
to the calculated equivalent isotropic
permeability, k.

2. The diagonalized

permeability, &, is used to have different
permeability values in each direction (i.e.
the principle permeability coordinate
system is assigned as the model
coordinate system).

anisotropic

Figure 9 illustrates the results (time vs.
recovery factor) of the two scenarios for
both cases: Case 1 is plotted in blue and
Case 2 is plotted in red. For each case, the
isotropic permeability is plotted with the
dashed line and the anisotropic permeability
with the solid line.

80 —

Time vs. Recovery Factor

70—
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10 . — =Case2-Isotropic

—— Case2-Anisotropic

= — —

0 0.1 0.2

Recovery Factor [-]

0.4 0.5 0.6 0.7

Figure 9: Time of recovery vs. Recovery factor for four permeability scenarios

Figure 10: Area and length of the matrix block in the maximum permeability direction
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As can be observed, each scenario
presents a completely different trend of
recovery: 55% recovery of the matrix oil
content for Case 1, takes nearly 8000 days
(~22 years) with isotropy assumption while
it takes about 21000 days (~58 years)
considering the anisotropy. For Case 2 it
takes about 3000 days (~8 years) with
1sotropy assumption and about 9000 days
(~24 years) with anisotropy assumption.

The difference in recovery time of 55%
between the isotropic and anisotropic
scenarios for Case 1 is ~36 years and for
Case 2 is ~16 years which are quite
remarkable differences in estimation of the
recovery time from a small matrix block,
with the same initial and boundary
conditions only as a result of considering or
ignoring the anisotropy.

It is also observable that all the curves
start at the same obvious recovery value of
zero (while the initial conditions are the
same) but also end at the same common
recovery value of 64.68% as the ultimate
recovery. The reason is that the ultimate
recovery from the matrix block only
depends on the driving mechanisms in
action and the saturation endpoints, which
are the same in all scenarios and are not
dependent on the permeability. In the other
words, all scenarios will ultimately produce
the same amount of oil but with different
trends and time scale. However, it is
essential that this trend is known as accurate
as possible to be able to make appropriate
plans for the production from naturally
fractured reservoirs.

Practical simplifications

The presented method to measure the
shape factor parameters from outcrops, is
mathematically accurate, but may be
considered too difficult to manually practice
on a large scale/quantity.

However, there are software programs
that help make 3-dimensional models from
the pieces of rock just by analyzing the
pictures in different angles from the rock
(such as 3D Software Object Modeller Pro
[28]). These 3D models can be then used to

easily determine the surface area, centroid
and the distance of each face to the centroid
and to ultimately calculate the shape factor
from Eq.(4).

An alternative practical method is to
express the Heinemann-Mittermeir [9]
shape factor formula in an approximated
form to facilitate intuitively estimation of
the parameters as shown in Eq. (23):

O_HM ~ 1 EAkmin +Akmax +Akintj

“vld d d

m

(23)

k min k max kint

where V,, is the volume of the matrix
block, Ak is the projected area of the matrix
block on a plane orthogonal to the
maximum, minimum or intermediate
permeability directions and d is half of the
mean length of the matrix block (Lg) in that
direction. Figure 10 shows the schematic
representation of Agm., the projected area
and Lgma, the mean length of the matrix
block in the direction of maximum
permeability.

It is possible to estimate Ax and Lk as
well as the matrix block’s volume, V,,
intuitively after a few measurements, which
makes onsite utilizing of this shape factor
formula more practical. The principle
permeability direction may be estimated
itself by close inspection of the formation
sedimentation.

The permeability values can be measured
in lab for some cores and averaged for the
formation.

Note that in Eq. (23), the normalized
directional permeability values are not
explicitly observable; as their effect is
already included in the term Ax/dx (i.e.
since this term is determined in the principle
permeability directions, they are dependent
on the anisotropic permeability tensor).

In Eq. (23), the term o' is calculated
rather than o™k, as in Eq.4), and
therefore, in order to calculate the transfer
term, the average permeability &, has to be
multiplied (by the shape factor value) as
well; however, as already mentioned, using
the equivalent isotropic permeability here,
does not undermine the matrix anisotropy,
since the shape factor is already calculated
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considering the normalized permeability
tensor i.e. in the principle permeability
direction.

Such simplifications make it practical to
use field outcrop investigations to measure
the anisotropic shape factor more accurately
than what is currently being used, but still
not as time-consuming and as accurate as
measuring all the parameters in the lab for
every piece of rock, as was described earlier
in this paper (which makes it impractical on
a large scale).

Conclusions

This study, using four different scenarios
which  were  identical except for
permeability tensor while follow completely
different trends of production, demonstrates
that although permeability anisotropy is not
considered  routinely in  petroleum
engineering studies, it can play a significant
role in depletion trend of matrix blocks in
naturally fractured reservoirs.

Therefore, use of a shape factor such as
Heinemann-Mittermeir which considers the
anisotropy, also is theoretically derived and
mathematically  proven, is highly
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