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Abstract 

The rheological properties of drilling fluids, including viscosity and yield point, are 

essential for the effectiveness of drilling operations. Inaccurate predictions of these 

parameters may lead to costly complications during the drilling operation.  

Among artificial intelligence (AI) methods, the general regression neural network 

(GRNN) approach and the fuzzy logic method possess high speed of estimation and 

also less adjustable parameters compared to other methods. Despite the great 

capability of these two methods, they have seldom been used to predict the 

rheological properties of drilling fluids. Hence, through programming in MATLAB 

software, the capabilities of these methods in predicting the rheological properties 

of drilling fluids were investigated by comparison of their predictions against 

experimental results. The neural network contained one input layer with three inputs 

(clay mass, Na2Co3 concentration, and Gum Arabic concentration), one hidden layer 

with 38 neurons, and one output layer with three outputs (apparent viscosity (AV), 

plastic viscosity (PV), and yield point (YP)). In the fuzzy logic method, the optimal 

value of the clustering radius was considered 0.1 in this research. Based on the two 

methods designed, the value of R (about 0.99) and RMSE (about 0.5) between 

predicted values and the measured values of rheological properties in training and 

testing data were extremely good. Our findings indicate that both AI methods can be 

utilized to predict the rheological parameters of drilling fluids with different 

compositions. 
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1. Introduction 

Drilling fluids have multiple tasks in drilling operations, including resisting 

formation pressure, ensuring wellbore stability, cooling and lubricating the drill bit, 

cleaning the bottom of the wellbore, and suspending cuttings in the annulus when 

circulation stops or transporting them to the surface during the drilling process. 

Therefore, the blood of the drilling operations may be considered as the drilling fluid. 

Problems or solutions to the problems encountered during drilling operations are 

directly or indirectly linked to the drilling fluid [1]. Viscosity, yield point, and other 

rheological properties of drilling fluids are essential parameters for conducting an 

effective drilling operation. Inaccurately predicting these parameters may lead to 

expensive drilling problems [2]. When fluid properties are not designed 

appropriately, various fluid-related problems may occur such as wellbore instability, 

lost circulation/blowout, and potential formation damage. The oil industry uses 

sophisticated physics-based methods to anticipate and resolve fluid-related issues. 

Event detection, hole cleaning modeling, and hydraulics modeling are a few 

examples. However, these techniques are not always appropriate, and they are 

computationally costly and challenging to integrate for real-time analysis [3]. 

Besides, the conventional Bingham plastic and Power law models employed to 

describe the behavior of non-Newtonian fluids typically have a narrow range of 

independent variables or have limited application. 

Overall, Classical methods in modeling are often laborious, reliant on trial and error, 

and need iterative adjustment to achieve the best desired outcomes. These models 

typically need numerous assumptions and simplifications and perform poorly when 

faced with highly complicated interdependencies [4]. One of the emerging trends in 

the scientific community that has been incorporated into almost all fields is the use 

of artificial intelligence (AI). AI is viewed as a tool for comprehending the 

interactions between complicated structures [1]. Owing to the growing availability 



 

 

of data and the rapid advancement of AI technology, many machine learning (ML) 

studies have emerged in various drilling applications, especially in recent years.  

ML-based methods can be more advantageous than classical analytical or numerical 

models for a variety of reasons. These reasons include the use of more adaptable 

model inputs, improved forecasting accuracies, the model capability to facilitate the 

discovery of new relationships that are not apparent as well as to predict the behavior 

of systems that are complex with interdependencies between input and output 

variables, and ultimately, the ability to select the optimal values of model 

characteristics yielding minimum prediction errors [1, 5]. 

In terms of data collection, the oil and gas sector is a global leader due to the 

utilization of data collection devices such as surface and downhole sensors. Massive 

volumes of information gathered from these sensors are too much usually for the 

assessment by a human being. ML models, however, make an effort to make certain 

connections between input and output state variables disregarding the physical 

dynamic behavior of the system [4]. In fact, ML is an area of AI that focuses on 

analyzing data, learning from it, and predicting future outcomes. In general, there 

are several groups of methods and approaches in this regard: supervised learning 

methods (which comprise regression and classification), unsupervised learning 

methods (which consist of clustering), semi-supervised learning, and reinforcement 

learning. However, the most widely utilized technique that maps a set of inputs to 

the corresponding output(s) is supervised learning [4-5]. Artificial neural network 

(ANN) with multiple inputs and single/multiple outputs is the most widely used ML 

technique in drilling mud engineering. ANNs are the most commonly applied AI/ML 

method in drilling mud engineering accounting for about 50% of the papers 

published in this area of science. They have capabilities that allow them to resolve 

difficult and intricate engineering challenges that cannot be solved by classical 

mathematics or any other traditional ways [1]. In drilling optimization, ANNs can 



 

 

assist in cases where no clear relationship exists between input and output 

parameters. Additionally, ANNs can estimate possible outcomes based on a few 

parameters from the target wells rather than applying the usual industry formulas. 

Another AI/ML method is fuzzy logic, which is used to deal with non-linear 

separable datasets. This technique allows us to take into account the degree of truth 

for several different techniques [4]. 

The availability of data and the advancements in computation technology have 

enabled ML methods to gain prominence as versatile in addressing the drawbacks 

of traditional models for predicting rheological parameters. ANNs and other ML 

models are employed for the rheological prediction of drilling fluids [2]. Currently, 

different types of ML techniques are at various levels of integration into drilling 

fluid engineering, where the most employed are ANNs and the least are case-based 

reasoning and particle swarm algorithms [1]. There are some recent ML (especially 

ANN)-related published studies in the literature regarding the prediction of the 

rheological properties of drilling fluids by AI [see 6-16]. For example, Al-Azani et 

al. [6] discussed the use of ANNs to develop a model to predict the rheological 

properties of oil-based drilling fluid. The model was based on 400 data points 

collected from field measurements, and was found to predict properties accurately 

with less than 5% error and a correlation coefficient higher than 90%. Elkatatny  

et al. [7] presented a new approach for determining the rheology parameters of 

water-based drilling fluid by using ANNs. Rheological properties and flow behavior 

index were predicted in real-time based on the caliper variables (namely drilling 

fluid density, Marsh funnel viscosity, and solid percent) that were measured 

frequently every 15-20 minutes in the well site. The ANN was able to predict the 

rheological properties with high accuracy. Oguntade et al. [10] discussed the use of 

ANNs for predicting the properties of water-based mud rheology and filtration. The 

study used data from laboratory experiments to train the ANN to predict more values 



 

 

without physical experimentation. The best predictions for rheology properties and 

filtration properties were obtained by ANNs with 15 neurons and 8 neurons in the 

hidden layer, respectively. Ismail et al. [12] presented a research paper on the use of 

grass powder as an environmentally friendly additive to improve the gel strength and 

viscosity of water-based drilling mud. The study applied ML techniques to the 

generated rheological data and provided important results in terms of the 

effectiveness of different particle sizes and weight conditions of the grass additive.  

An application of ML was presented by Alsabaa et al. [13] to determine the 

rheological properties of synthetic oil-based mud. ANNs were implemented in 

developing four models for establishing the rheological characteristics of the 

synthetic oil-based system. A real-field dataset was utilized for the training and 

optimization of the proposed models. The predicted rheological properties were 

statistically acceptable compared to the actual measurements. Al-Obaidi et al. [16] 

presented a paper regarding the use of ANNs and multiple regression analysis to 

create new models for real-time prediction of rheological properties of drilling mud. 

They discussed the importance of mud rheological properties and gel strength in 

drilling fluid functions. The authors used real field data to create and optimize the 

ANNs and multiple regression models. The results demonstrated that the ANNs can 

predict the rheological properties more accurately than multiple regression models. 

Despite the existence of different ML models in the literature, the general regression 

neural network (GRNN) approach and the fuzzy logic method are usually preferred 

due to the high speed of estimation and also less adjustable parameters compared to 

other AI methods. Published literature indicates that despite the great capability of 

these two methods, they have seldom been employed to estimate the rheological 

properties of drilling fluids. Consequently, through programming in MATLAB 

software, the capabilities of these methods in estimating the rheological properties 



 

 

of drilling fluids were examined in this study by comparison of their predictions 

against experimental observations.  

 

2. GRNN and Fuzzy Logic 

AI is the science of creating intelligent machines by using computers and through 

the understanding of human or animal intelligence and finally achieving the 

mechanism of AI at the level of human intelligence. AI is utilized to solve complex 

and difficult problems in terms of analytical and logical methods. Comparing AI 

with human intelligence, humans can observe and analyze issues to make judgments 

and decisions, while AI is based on rules and procedures already defined in the 

computer. AI techniques were introduced for those problems that could not be easily 

solved by functional programming or mathematical methods. The most famous AI 

branches include [1]: artificial neural networks, support vector machines, fuzzy 

logic, genetic algorithms, hybrid intelligent systems, particle swarm algorithms, and 

case-based reasoning.  

The ANNs are derived from the biological neural network. Each ANN consists of 

units called "neurons". Each simple network includes an input layer, a hidden layer, 

and an output layer. The input layer receives signals from the outside environment 

(or from other neurons). The hidden layer gathers and processes the input signals 

and transmits them out through the output layer. Each ANN goes through the stages 

of training, testing, and implementation. In terms of performance, the ANN has 

various methods, including the commonly used multi-layer perceptron (MLP) 

network with back-propagation (BP) algorithm and radial basis function (RBF) 

neural networks [17-19]. Fig. 1 shows a radial network with R inputs. Radial 

networks require more neurons than BP networks, but these networks are designed 



 

 

when the training of BP networks is time-consuming. Besides, these networks have 

better performance when there are more input vectors [19]. 

 

 
Fig. 1 Neuron model of radial neural network [19] 

 

The input or neuron of this network is different from the input neurons of the BP 

network. The network input for the radial driving function is the vector distance 

between the weight vector (𝑤) and the input vector (𝑝), multiplied by the bias (𝑏). 

In Fig.1, The box ||𝑑𝑖𝑠𝑡|| takes the input vector (𝑝) and the single-row matrix of the 

weight (𝑤) and produces a dot product of the two. The driving function of a radial 

neuron is 𝑟𝑎𝑑𝑏𝑎𝑠. 

GRNN can be considered a normalized radial network that has one hidden neuron 

for each training unit. This network is a single-pass learning algorithm with a parallel 

structure that was invented in 1990 and can produce continuous outputs. These 

networks are based on the probability density function and one of its prominent 

features is the fast training time and modeling of nonlinear functions. Even with 

scattered data in a multi-dimensional measurement space, this network provides 

smooth changes from observational data to other data. The algorithm form of this 

network can be utilized for any regression problems where there are no assumptions 

concerning the linearity of the regression. This network does not possess the 



 

 

parameters of the BP network but instead possesses a "smooth factor" whose optimal 

value is obtained by trial and error [17, 19]. 

The Fuzzy set theory serves as a valuable tool when in most cases uncertainty or 

lack of input data related to reservoirs and formations prevail [4, 20]. A fuzzy logic 

algorithm consists of fuzzy sets formed by the functions of imprecise reasoning and 

uncertainty. The role of a Fuzzy Logic system is to model the uncertainty that causes 

the complexity and inaccuracy. The reason behind uncertainties is data insufficiency. 

Essentially, the output of an event in a random process highly depends on chance or 

likelihood of occurrence. Hence, probability theory is suitable for handling a 

problem when uncertainty is a result of event randomness [4]. Classical logic 

assumes a value of one for true propositions and a value of zero for false 

propositions, but in "fuzzy logic" there is no need for these values to be zero and one 

and these propositions are true to some degree. This degree is determined by a 

function called "membership function" and its range is [0,1]. The goal in fuzzy logic 

is to relate the input space to the output space by "if-then" rules using Mamdani or 

Sugeno-type fuzzy inference systems. Fuzzy logic puts the input data into clusters 

using clustering methods, including the subtraction method, and assigns an output 

to each cluster, then relates each new input to the aforementioned clusters by 

considering functions, and based on this and taking into account the mentioned 

functions, it provides new outputs [21-22]. 

 

3. Results and Discussion 

In this research, MATLAB software was employed to design GRNN and fuzzy logic 

models. To train and test these two methods, 48 experimental data on the rheological 

properties of drilling fluids with different compositions published in Salam et al. 

[23] were used. Three parameters, namely mass of clay, concentration of Na2Co3, 

and concentration of Gum Arabic, were selected as network inputs, and three 



 

 

parameters, specifically apparent viscosity (AV), plastic viscosity (PV), and yield 

point (YP), were chosen as network outputs (Fig. 2).  To better recognize the patterns 

by two methods, all parameters were normalized in the range [-1,1]. Table 1 presents 

the minimum, maximum, mean, and median values of the network parameters. Table 

2 presents the impact of these input parameters on three rheological parameters using 

SPSS software. According to the Table, all the input parameters have a positive 

effect on the rheological parameters. The effect of Na2CO3 concentration and clay 

mass on rheological parameters is more noticeable. 

Table 1 Maximum and minimum values of the data used 

Parameter Minimum Maximum Mean Median 

Clay Mass (gr) 22.5 40 35 35 

(%) Concentration 3Co2Na 0 10 6 7 

Gum Arabic Concentration (%) 0 27 10.33 9.5 

AV (cp) 1.25 28.83 7.5 6.5 

PV (cp) 1 7.83 3.16 3 

)2YP (lb/100 ft 0 46.33 6.75 3.5 

 

Table 2 Correlation matrix between the input and output parameters 

 Na2CO3 Gum Arabic Clay Mass AV PV YP 

Na2CO3 1 0.000 0.000 0.433 0.503 0.384 

Gum Arabic 0.000 1 -0.293* 0.222 0.417 0.142 

Clay Mass 0.000 -0.293* 1 0.555 0.431 0.564 

AV 0.433** 0.222 0.555 1 0.865 0.986 

PV 0.503 0.417 0.431 0.865** 1 0.767 

YP 0.384 0.142 0.564 0.986 0.767 1 

 

 



 

 

 
Fig. 2 Schematic of the network considered in this study 

Out of 48 available data, 38 data were randomly selected for training and 10 data for 

testing the neural network and fuzzy model. General regression radial neural 

network (newgrnn in MATLAB) was trained to estimate rheological parameters with 

different smooth factors. Finally, according to the criteria of correlation coefficient 

(R) and root mean square error (RMSE) (Eqs. 1-2) for two series of training and 

testing data, the optimal value of the network smooth factor was considered equal to 

0.1. This network considers the number of neurons in the hidden layer as much as 

the training data (38 neurons). 

𝑅2 = 1 −
∑ (𝑦𝑖 − �̂�𝑖)

2𝑁
𝑖=1

∑ 𝑦𝑖
2 −

∑ �̂�𝑖
2𝑁

𝑖=1

𝑁
𝑁
𝑖=1
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𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑖 − �̂�𝑖)

2

𝑁

𝑖=1

 

(2) 

where 𝑦𝑖  denotes the measured value, �̂�𝑖 stands for the predicted value, and 𝑁 

indicates the number of data.  



 

 

The network described above (Fig. 2) was employed to predict the rheological 

properties of the drilling fluid. As observed in the network designed in the MATLAB 

software (Fig. 3), this network contains one input layer with three neurons, one 

middle layer with 38 neurons and a radial activation function, and one output layer 

with three neurons and a linear activation function.     

 

 

 

Fig. 3 Radial structure of GRNN in MATLAB 

In MATLAB software, the genfis2 function was used to build the fuzzy model. This 

function is a Sugeno-type inference system based on the subtractive clustering 

method. This function constructs a fuzzy system based on subtractive classification 

by taking an initial classification radius. 

In this method, based on the classification radius, the number of categories and so 

the number of if-then rules or the number of membership functions will be different. 

The command of the genfis2 function is as follows: 

𝐹𝑖𝑠𝑚𝑎𝑡 = 𝑔𝑒𝑛𝑓𝑖𝑠2(𝑑𝑎𝑡𝑎𝑖𝑛, 𝑑𝑎𝑡𝑎𝑜𝑢𝑡, 𝑟) (3) 

Fismat is the name of the created system, datain is the matrix of input parameters of 

the problem, dataout is the matrix of output parameters, and r is the classification 

radius (r is chosen between 0 and 1; the smaller the value of r, the more the number 

of categories). 

The best r is obtained through trial and error, which in our problem was equal to 0.1 

according to the values of the correlation coefficient (R) and RMS between the actual 



 

 

values and the estimated (simulated) values obtained by the fuzzy method in the 

training and testing data. The type of membership function of inputs is Gaussian and 

the type of membership function of outputs is linear in this model by default. 

According to this selected classification radius, the number of rules is equal to 38. 

To evaluate and simulate the constructed fuzzy system, the evalfis command is used. 

Table 3 presents the results obtained using these two methods for rheological 

properties.  

Table 3 The results of the developed predictive models 

 Testing Training Model 

RMSE 𝑅2 R RMSE                    𝑅2 

0.48 0.994 0.997 1.2e-4 1 AV GRNN 

0.55 0.9025 0.95 5.24e-5 1 PV 

0.85 0.994 0.997 1.2e-4 1 YP 

0.47 0.994 0.997 4.06e-15 1 AV Fuzzy 

0.56 0.9025 0.95 5.15e-15 1 PV 

0.97 0.994 0.997 6.46e-15 1 YP 

 

The predicted values of AV are compared with corresponding actual/experimental 

observations for training and testing data in Figs. 4-5. The predicted values of PV 

are compared against corresponding actual/experimental values for training and 

testing data in Figs. 6-7, and finally, the comparison is shown in Figs. 8-9 for the 

predicted values of YP and corresponding experimental observations for training 

and testing data. As observed, there is an excellent agreement between the 

experimental observations and predicted data in all cases confirmed by R values 

which are all equal or very close to 1.  



 

 

  

Fig. 5 Comparison of actual values of AV vs. 

predicted values for testing data 

Fig. 4 Comparison of actual values of AV vs. 

predicted values for training data 

 

  
 

Fig. 7 Comparison of actual values of PV vs. 

predicted values for testing data 

Fig. 6 Comparison of actual values of PV vs. 

predicted values for training data 
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Fig. 9 Comparison of actual values of YP vs. 

predicted values for testing data 

Fig. 8 Comparison of actual values of YP vs. 

predicted values for training data 

 

ML models have limited applications in terms of interpretability. Classical ML 

models, while very good in prediction, are usually interpreted as “black boxes” 

meaning they provide little reasoning for their predicted outputs. Explainable AI 

(XAI) has been recommended as a potential solution to this challenge to make ML 

models more interpretable. Despite this, the application of XAI in the field of drilling 

fluid engineering is still in its preliminary stage, suggesting a substantial opportunity 

for further development of XAI in this area [2].  

 

4. Conclusion 

Two artificial intelligence methods, namely GRNN and fuzzy logic were employed 

due to their simple structure and high prediction speed to predict the rheological 

parameters of a specific drilling fluid. The GRNN contained one input layer with 
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three inputs (specifically clay mass, Na2Co3 concentration, and Gum Arabic 

concentration), one hidden layer with 38 neurons, and one output layer with three 

outputs (AV, PV, and YP).  The optimal value of the smooth factor in this network 

was determined to be 0.1 through trial and error. In the fuzzy logic method, the 

optimal value of the clustering radius was considered 0.1 in this research. Based on 

the two methods designed, the values of R (about 0.99) and RMSE (about 0.5) 

between predicted values and the experimentally measured values of rheological 

properties in training and testing data were extremely acceptable. In other words, 

there was an excellent agreement between the experimental observations and 

predicted data in all cases, confirmed by R values all equal or very close to 1. The 

results obtained demonstrate that these two methods can be employed to predict the 

rheological parameters of drilling fluids with different compositions. These 

parameters can be utilized for the optimal design of drilling hydraulics.  

 

Nomenclature 

Table 4 List of nomenclatures used in the equations of this paper 

Item  Sign Meaning  

1 𝑦𝑖 Measured value 

2 �̂�𝑖 Predicted value 

3 𝑁 Number of data 

4 𝐹𝑖𝑠𝑚𝑎𝑡 Name of the created system 

5 𝑑𝑎𝑡𝑎𝑖𝑛 Matrix of input parameters of the problem 

6 𝑑𝑎𝑡𝑎𝑜𝑢𝑡 Matrix of output parameters 

7 r Classification radius 

8 𝑤 Weight vector 

9 𝑝 Input vector 

10 𝑏 Bias 

11 GRNN General regression neural network 

12 RMSE Root mean square error 

13 R Correlation coefficient 
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