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ARTICLE INFO ABSTRACT

Article History: Corrosion is a serious engineering and economic problem that affects
Received: 11 April 2025 metals and alloys, particularly carbon steel, which is widely used in many
Revised: 29 June 2025 industrial applications. This review provides a comprehensive overview of
Accepted: 02 July 2025 the corrosion of carbon steels in rich chloride media, beginning with an
Published: 02 July 2025 examination of corrosion mechanisms and factors that influence corrosion,

as well as the types of corrosion and the primary corrosion products (rust).
It also explores the primary methods used to study and monitor corrosion
Article type: Research (non-electrochemical and electrochemical techniques), ranging from
laboratory experiments to advanced analytical techniques. Among the
strategies to mitigate corrosion, the use of corrosion inhibitors plays a

Keywords: crucial role in reducing the corrosion rate of carbon steels. This is especially

Carbon Steels, true in harsh environments rich in chloride, which accelerates metal

Chloride Ions, degradation. This review also presents previous studies on corrosion in

Corrosion, chloride-rich waters. It evaluates the effectiveness of various inhibitors in

Corrosion Products, controlling corrosion, thereby contributing to the development of efficient

Inhibitors protective solutions for metals under harsh, aggressive conditions.
Introduction

Metal corrosion creates a significant risk to environmental and human health. Corrosion may
release hazardous metals, including lead, cadmium, and chromium, into soil and water,
polluting ecosystems and contaminating the food chain. Moreover, infrastructure deterioration
can lead to hazardous leaks, compromising water quality and posing immediate health risks.
Corrosion is not only a matter of material degradation; it also poses significant environmental
and public health risks.

The corrosion of metals has a significant impact on several industrial sectors [ 1-5]. Metals,
such as steels and alloys, have been widely utilized in industrial and technical applications.
Moreover, metals are used in the offshore petroleum, power generation, nuclear energy,
aerospace, shipping, and building industries [6—11]. Corrosion is the irreversible deterioration
of a metal surface resulting from chemical reactions in which pure metal is converted into more
chemically stable forms, such as metal oxides, hydroxides, or oxyhydroxides, in a corrosive
environment. These environments can exist in solid, liquid, or gaseous states and are commonly
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referred to as electrolytes [12]. Corrosion is a surface process that occurs on the outer layer of
the metal and manifests itself in several forms: An initial attack on the surface may cause
general corrosion, leading to a gradual reduction in thickness, or it may cause localized damage,
leaving only specific areas corroded, as sometimes seen at grain boundaries or in areas of
weakness resulting from differences in the metal's resistance to the corrosive environment [13].
This process is slow, but over time it causes the deterioration of metal machinery and
equipment, reducing their production efficiency. The annual economic losses resulting from
various forms of corrosion in India are estimated at $6.5 billion. At the same time, direct waste
in the United States accounts for approximately 3.2% of gross domestic product [14]. A good
understanding of corrosion and the application of appropriate and timely solutions are essential
for controlling it [15]. Furthermore, a special type of corrosion can occur in relatively pure
water at temperatures around 1300°C on the product side, known as classic hot-spot corrosion
[16]. Corrosion is widely recognized as a universal phenomenon. Carbon steels (CS), due to
their excellent mechanical properties [17-19]. In addition to the possibilities for processing
(welded, chipped, deformed), are an appropriate choice for use in the manufacture of different
parts of machines, accessories of fall arrest systems such as carabiners, hooks, and pythons,
vehicle bodies, shipbuilding, or in use in buildings, bridges, rails, water, gas, and industrial
pipes, cooling tower parts [20-31].

This study focuses on carbon steels with carbon at or below~0.35% to facilitate welding.
Subsequent differentiation can be based on carbon content. Low-carbon steels (containing
fewer than 0.15% carbon) have insufficient carbon to harden and are commonly used for hot
working or to achieve maximum ductility in the annealed state. Steels containing less than
0.25% carbon, commonly known as mild steel, exhibit increased strength as they approach the
maximum limit of carbon content. Medium-carbon steels (0.25-0.55% carbon) are frequently
heat-treated (quenching and tempering) to attain greater strength; however, this review focuses
mainly on compositions below 0.35% carbon [32]. CS may become corroded during industrial
operations; thus, corrosion inhibition is sometimes crucial for safe, economical operations,
enabling prolonged use of CS. This review examines CS as the most suitable alloy for pipeline
construction to transport water, oil, and gas. The majority of corrosion problems in the water,
oil, and gas industries are related to pipelines and their exposure environments, which determine
the appropriate CS type. This article presents an in-depth examination of the corrosion
characteristics of CS in saline solutions, focusing on the fundamental electrochemical
processes, key influencing variables, and various experimental methodologies used to assess
corrosion rates. Furthermore, it analyzes multiple mitigation measures, including the use of
corrosion inhibitors. This study reviews recent research to identify contemporary challenges,
knowledge gaps, and emerging trends in corrosion science. The insights provided aim to
enhance the effectiveness and sustainability of corrosion prevention techniques, particularly in
the shipping, industrial, and oil and gas sectors.

Corrosion Mechanism

Corrosion is characteristic due to chemical (dry corrosion) or electrochemical (wet
corrosion) interactions with its surroundings. Nonmetals are excluded from the current
definition [32]. The breaking down of reactions into partial oxidation and reduction processes
1s referred to as electrochemical [33]. For corrosion, these reactions must be performed [34].

Corrosion happens at the anode. At the point of the anode, oxidation, or the loss of electrons
from the metal, occurs. The metal with the greater reduction potential is often referred to as the
anode. The anodic metal is oxidized to its corresponding cation by losing electrons.
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M—->M+ne” (1)

At the cathode, reduction occurs, wherein the metal receives electrons from the anode. This
may occur through the evolution of hydrogen and/or the absorption of oxygen.

By Hydrogen Evolution

It is the corroding process during which hydrogen is released. The process often occurs in
an acidic or alkaline medium, when H" ions absorb anodic electrons and release hydrogen.

2H* 4+ 2e~ - H,(gas) (2)
For example, Fe metal reaction at anode:
Fe — Fe?* + 2e” (3)

And reaction at the cathode:

2H,0 + 2e™ = H, (gas) 4)

Overall cell reaction:

Fe + 2H,0 - Fe** + H, (gas) (5)

By Absorption of Oxygen

It is the corrosion process involving the absorption of oxygen. This typically occurs in a
neutral liquid, with NaCl serving as the conducting medium, as shown in Fig. 1, where O is
absorbed to produce OH" ions.

>0, + Hy0 + 2™ > 20H" (6)
For example, at the anode, the carbon steel reaction is:

Fe — Fe*t + 2e” (7)
and at the cathode is:

>0, + Hy0 + 2™ - 20H" (8)
Overall reaction:
Formation of Fe?" ions at the anode and OH- ions released at the cathode, which come to

form iron hydroxide [Fe (OH)2] [35].

Fe?* + 20H™ - Fe(OH), )
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Fig. 1. Schematic representation of carbon steel immersed in NaCl solution (a) Mechanism [36], and (b)
Corrosion layer formation on the steel’s surface

Factors Affecting the Corrosion Process

Numerous internal and environmental variables directly or indirectly influence corrosion;
some of these elements are illustrated in Fig. 2. We will focus on the nature of the metal and
natural corrosion environment. Additional factors influencing corrosion include metal purity,
surface coating characteristics, properties of the corrosive product, temperature, dissolved salt
concentration, air humidity, and electrolyte pH.

Nature of Alloy or Metal

It further depends upon:

Galvanic Series Position

When different metals are electrically connected in a specific electrolyte, the metal with the
higher oxidation potential (i.e., higher in the electrochemical series) corrodes, while the other
metal remains protected. The rate of corrosion depends directly on the electrochemical
difference between the two metals; the greater the difference, the faster the corrosion. The
susceptibility of metals to corrosion is illustrated in Fig. 3. For example, in the presence of
copper and cast iron in the same electrolytic medium, the cast iron corrodes first. In contrast,
the copper remains protected from corrosion.

Purity of Alloy or Metal

The corrosion rate typically increases with rising impurity levels. This occurs because
impurities form small electrochemical cells in which the anodic component corrodes. For
instance, zinc with impurities such as iron or lead exhibits accelerated corrosion.
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Nature of the Surface Film

A thin layer of oxides forms on the surfaces of all metals in an aerated environment. The
effectiveness of this layer is determined by the volume ratio between the metal oxide and the
original metal, known as the ‘specific volume ratio.” In light of this, the higher this ratio, the
lower the rate of metal oxidation.

Nature of Corrosion Product

The corrosion rate accelerates when the corrosion product is soluble in the corrosive
medium, as this allows the reaction to continue at the metal surface. The volatile product
evaporates immediately after formation, exposing the metal to further attack and thereby
increasing the rate of rust formation.

Alloy or Metal Grain Size

The mechanical characteristics of low-carbon steel are predominantly influenced by ferrite
particle size, with finer grains being advantageous for mechanical traits [37-39]. Nevertheless,
the high energy and chemical reactivity of grain boundaries result in a higher density of these
boundaries, which enhances surface reactivity by improving electron activity and diffusion,
thereby influencing corrosion resistance. Enhanced corrosion resistance extends the durability
of steel buildings [40—45]. Consequently, examining the effects of grain size on the corrosion
resistance of low-carbon steel is a significant topic.

Nature of corrosive environment

It further requires:

High temperature: The rate of corrosion increases sharply with rising temperature, doubling
with every 10 °C increase, provided that other biological and chemical factors remain constant
[46]. This behavior is often depicted as an exponential curve, showing the direct effect of heat;
however, the reality is more complex, as thermal changes also affect the effectiveness of other
factors, such as ion transport, gas dissolution (especially oxygen), and the properties of the
protective layer formed on the metal surface. The effect of increased temperature is evident in
two main ways: first, by accelerating electrochemical reactions through higher molecular
energy and more frequent effective collisions; and second, by modifying intermediate factors,
such as solubility, ion transport, and microbial activity, adding further depth and complexity to
the underlying exponential curve.

Media humidity: The rate of corrosion increases significantly when a certain level of relative
humidity, known as the critical humidity, is exceeded, as the iron oxide layer's ability to absorb
atmospheric humidity enhances electrochemical corrosion. The available moisture provides the
metal surface with the electrolyte needed to form an effective electrochemical cell, thereby
accelerating oxidation and recovery reactions at the metal interface.

Effect of dissolved salts in media: The corrosion rate initially increases with increasing salt
content, then gradually decreases to a value lower than that in distilled water once the
concentration reaches saturation. Different types of salts, such as sodium chloride, alkali metal
salts, alkaline earth metal salts, and acid salts, affect the corrosion behavior of iron and steel in
various ways, depending on their ability to alter the properties of the oxide layer and the ion
conductivity in solution [47].

Effect of pH in media: pH is the most critical factor in determining corrosion rate; a decrease
in pH is usually accompanied by a significant increase in corrosion rate, indicating that acidic
media (pH below 7) are more corrosive than neutral or alkaline media [48].

Effect of dissolved oxygen in media: Dissolved oxygen plays a critical and complicated
function in the corrosion of metals. Oxygen participates in cathodic processes on the metal
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surface in neutral, alkaline, and acidic environments. Therefore, corrosion is necessary for its
occurrence. In the absence of dissolved oxygen, corrosion in neutral and alkaline solutions
diminishes to nearly nothing. An increase in dissolved oxygen content, due to its participation
in cathodic processes, promotes corrosion. What would occur if we were to inject increasing
amounts of water infused with oxygen? It has been established that oxygen, under specific
conditions (in high-purity water) and at elevated temperatures, can form a thick, protective
coating of metal oxides on the metal surface, thereby reducing corrosion [49].

[ Factor Effecting CorrosionJ

I
[ |

[ Nature of Metal ] [Nature of Corroding MediaJ
I [ [ [ |
Position in Purity Nature of Nature of Humidity i
Galvanic [ of Metal J [Surface Fllm} Corrosive Temperature pPH of Air Dissolved axygen
series Product

Fig. 2. Some of the factors affecting the corrosion process

Magnesium
Magnesium alloys
Less Noble Zinc and its alloys
- Aluminum and its alloys
Most Reactive Cadmium
Mild steel
Cast iron
Stainless steel (active)
Lead
Tin

Brass
Aluminum bronzes
Copper
Bronze
Copper-Nickle alloys
Monel Neckel-Copper
More Noble alloys

. Titanium and its alloys
Least Reactive Stainless steel (passive)

Silver
Gold
Platinum

Fig. 3. Corrosion susceptibility of the metal

Methods for Studying Corrosion
Non-Electrochemical Technique (Weight Loss Method)

This is a gravimetric technique in which the weight of a carbon steel sample is measured
before and after exposure to a corrosive environment (e.g., a saline solution). The difference in
weight is used to calculate the corrosion rate according to the following equation [50]:

Kw
DX T XA

(10)

Corrosion rate =
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The corrosion rate can be characterized as an increase per unit in the depth of corrosion over
time, measured in mils per year (mpy) or as weight loss per unit area per time, often in
milligrams per square decimeter per day (mdd) or as the corrosion current (mA.cm™). The
standard SI unit for denoting corrosion rate is millimeters per year (mm/y) or inches per year
(in/y). Table 1 illustrates the corrosion resistance classification of CS.

Table 1. The comparison of the corrosion resistance classification of CS [51]
Approximate Corrosion Rate

Relative Corrosion Resistance

Mpy mm/y
Outstanding More than 1 More than 0.02
Excellent 1-5 0.002-0.1
Good 5-20 0.1-0.5
Fair 20-50 0.5-1
Poor 50-200 1-5
Unacceptable Less than 200 Less than 5

Many researchers [52-58] have measured the corrosion rate of different types of carbon steel
in different chloride media at 25 °C of immersion, as shown in Table 2.

Table 2. Corrosion rates of various types of carbon steels in different chloride media

Types of Carbon Steel Type of Salt Solution Total Immersion Time  Corrosion Rate Ref.
Low carbon steel Marine water 24 months 500 mm/y [52]
Low carbon steel Seawater 28 days 0.037 mm/y [53]
Low carbon steel Lake Water 28 days 0.045 mm/y [53]
Low carbon steel Tap Water 28 days 0.04 mm/y [53]

Medium carbon steel Banda Aceh's 12 months 0.015 mpy [54]
Carbon steel Seawater 288 hours 0.18 mm/h [55]
Carbon steel Beibu Gulf Tidal Zone 360 days 600 mm/day [56]

Mild Steel 1% NaCl 28 days 0.788 mpy [57]
Mild Steel 3% NaCl 28 days 0.687 mpy [57]
Mild Steel 5% NaCl 28 days 0.360 mpy [57]
Mild Steel 7% NaCl 28 days 0.779 mpy [57]
Mild Steel 10% NaCl 28 days 0.315 mpy [57]
Mild Steel Salt water 5 weeks 1.0622 mm/y [58]

Electrochemical Techniques for Studying Corrosion of Carbon Steel

The most commonly employed electrochemical techniques are the potentiodynamic
polarization technology (Tafel) combined with electrochemical impedance spectroscopy (EIS)
[59, 60]. The primary benefit of electrochemical methods, beyond weight-loss techniques, is
the ability to obtain additional information on corrosion mechanisms. Electrochemical
procedures are typically conducted in a three-electrode setup comprising a working electrode,
a reference electrode, and a counter electrode [61]. The impact of corrosion inhibitors has been
investigated by modifying the extract concentration, testing temperature, and liquid flow rate.
Electrochemical analysis is an efficient, rapid, and straightforward method [62].
Potentiodynamic polarization yields several electrochemical characteristics, including
corrosion potential (Ecorr.), corrosion current density (Icorr.), anodic slope (Ba), and cathodic
slope (Bc). Electrochemical impedance spectroscopy can accurately estimate corrosion rate with
minimal impact on the electrode. Various electrochemical techniques are available to assess the
extent of corrosion in metals and the efficiency and mechanisms of corrosion inhibitors.
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Potentiodynamic Polarization (Tafel)

The potentiodynamic polarization technique is widely employed, consisting of applying a
polarization current density and measuring the resulting electrode potential [63, 64].
Polarization curves (Anodic and cathodic) represent the relationship between polarization,
electrical current density, and electrode potential. However, when the potentiodynamic
polarization curve is excessively steep, significant deviations occur, preventing the formation
of a standard potentiodynamic polarization curve. Fig. 4 shows a potentiodynamic polarization
curve.

Ec

log ic |°g i

Fig. 4. Potentiodynamic polarization curve diagram

Electrochemical Impedance Spectroscopy (EIS)

Electrochemical Impedance Spectroscopy (EIS) quantifies the impedance of an electrode
system over an extensive frequency range, employing a small-amplitude sinusoidal potential as
the perturbation signal to achieve a nearly linear relationship between the system's response and
the perturbation. EIS is a prevalent testing method that has little effect on the electrode surface
condition. Consequently, it is widely used in scientific research and constitutes a significant
methodology for electrochemical testing [65, 66]. In the analogous circuit, Rs denotes the
resistance of the electrolyte solution between the working electrode and the reference electrode,
Rct denotes the charge-transfer resistance associated with the corrosion process at the metal-
electrolyte interface, and CPE denotes the constant phase element. In corrosion science, EIS
provides data on corrosion resistance, variations in electrode surface roughness, adsorption of
corrosion inhibitors, and the formation of corrosion products. In contrast to other conventional
electrochemical techniques, such as potentiodynamic polarization curves, EIS provides
enhanced insights into corrosion kinetics, as shown in Fig. 5.



Journal of Chemical and Petroleum Engineering 2025, 59(2): 357-385 365

RII

W —0

/

Rs Rct ‘ R

Fig. 5. Schematic diagram of electrochemical impedance spectroscopy

Surface Characterization Techniques

This section examines surface analytical methods for characterizing carbon steel surfaces,
both treated and untreated (e.g., corrosion inhibitors), in corrosive environments. The
discussion addresses aspects that affect the use of specific approaches in carbon-steel corrosion
research, including high surface roughness under corrosive conditions [67].

Scanning Electrochemical Microscopy (SEM)

Employing scanning electron microscopy (SEM), an accurate imaging technique that
provides high-resolution images of metallic surfaces, enables a comprehensive examination of
corrosion, protective films, and the underlying metal substrates [68, 69]. This approach involves
directing an electron beam at a sample, which produces secondary electrons via surface contact.
The electrons are subsequently collected to provide a high-quality image [70]. A key benefit of
scanning electron microscopy is its flexibility, allowing applications in environmental
chambers, both high- and low-vacuum environments, and the investigation of corrosion
processes under various conditions [71]. SEM can be used in conjunction with multiple
techniques, such as X-ray spectroscopy, to chemically analyze corrosion products and
determine the type of corrosion and its source. SEM is a crucial tool for examining corrosion,
as it can potentially identify localized corrosion sites and provide data on the concentration of
active corrosion species, thereby advancing the understanding of localized corrosion in specific
areas. It also provides valuable insights into inhibitors to improve protective methods and
enhance the useful lifetime of metal structures. Research evaluated the performance of a newly
developed organic corrosion inhibitor using SEM.

Energy Dispersive X-ray Spectroscopy (EDX)

EDX is a chemical analysis method that employs a high-energy electron beam to target
substances, excite electrons from inner shells, and concurrently emit X-ray photons. The energy
content of these photons is characteristic of the emitting element, facilitating the examination
of the sample's chemical structure. SEM-EDX is a high-magnification, stereoscopic microscopy
technique employed for the analysis of healing products. It uses a high-energy, concentrated
electron beam to examine materials, revealing physical information about the specimen's
surface topography. This technique is frequently employed to ascertain crystal structure, shape,
dimensions, and distribution. Backscattered SEM images are used to assess the interface
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composition. SEM/EDX is a method that offers an optical representation of a surface together
with the elemental composition of selected regions [72-76].

Atomic Force Microscopy (AFM)

Atomic force microscopy enables the examination of surface topography, including
measurements of surface roughness. Assessing the adhesion of an inhibitor or corrosive coating
on a substrate (metal or alloy) using topographical imaging alone has consistently posed
challenges. Moreover, capturing topographical photos might be challenging due to the irregular
film development. Consequently, AFM current images and force-distance curves are used to
provide further insights into the characteristics of surface layers, including the adhesion of
corrosion inhibitors and coatings [77, 78]. AFM can operate under various liquid conditions
and enables real-time surface monitoring in corrosive environments [79, 80].

X-ray Diffraction Spectroscopy (Synchrotron-Sourced)

Grating-induced X-ray diffraction (GI-XRD) is an effective method for studying interfacial
chemistry at the solid-liquid interface; however, its traditional application suffers from a low
signal-to-noise ratio, which can lead to inaccurate conclusions about phase evolution. This
challenge is exacerbated when analyzing thin films—such as corrosion inhibitor layers—on
carbon steel, as surface roughness in corrosive environments reduces the received signal.
Synchrotron-radiation-induced X-ray diffraction (SR-XRD) addresses these limitations by
providing a high signal-to-noise ratio sufficient for examining thin films on carbon steel even
under aggressive corrosion conditions. SR-XRD has high resolution due to the use of a parallel
beam, which reduces peak broadening at low angles of incidence. Additionally, it features high
brightness, high intensity, tight collimation, and low emission polarization, making it the
preferred choice of crystallographers [81].

It is also necessary to monitor the transformations undergone by corrosion products under
different conditions and to conduct in situ corrosion tests. In carbon dioxide environments
where oxygen is consumed, carbon steel forms iron carbonate as a by-product, which may
oxidize when subsequently exposed to oxygen-rich conditions. It has also been demonstrated
that combining field SR-GI-XRD with additional electrochemical methods such as cyclic
voltammetry and electrochemical impedance spectroscopy provides a deeper mechanistic
understanding of electrochemical reactions on copper surfaces [82, 83].

X-ray Photoelectron Spectroscopy (XPS)

XPS is a quantitative spectroscopic method that provides information on the elemental
composition at parts-per-thousand levels depending on the electronic and chemical state of the
surface being examined. This technique has been widely used in corrosion research to
characterize the composition of metal surfaces, particularly corrosion products. For example,
researchers applied it to carbon steel exposed to seawater, and three-dimensional analyses
revealed the absence of an iron signal in the spectrum, indicating that the surface was
completely covered with a corrosion product layer [84]. The presence of iron in both metallic
and oxidized states was associated with the formation of oxides, as confirmed by Raman
spectroscopy and X-ray diffraction. In addition, XPS was used in the qualitative analysis of
surface films to measure the effectiveness of protective layers, such as studying the formation
of iron carbonates on carbon steel surfaces [85] and examining the presence of hydroxide ions
within the layer to assess its cohesion and protective properties [86].
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Raman Spectroscopy (IR)

Raman spectroscopy (IR) has been recognized as a crucial surface characterization technique
for corrosion investigations, applicable to assessing both single-layer and multilayer surface
properties. Raman spectroscopy provides insights into surface interactions (vibrational data),
thereby offering structural information regarding the contact between the metal substrate and
corrosion inhibitor [87].

Fourier Transform Infrared Spectroscopy (FTIR)

Unique molecular fingerprints can be generated from the absorption and transmission of
infrared light. The quality and quantity of individual components in samples may be determined
using FTIR. IR, a dispersive IR method, was employed in previous investigations. Currently,
FTIR is widely used for its several benefits, including accurate measurements, rapid data
collection, high sensitivity, non-destructive analysis, and the absence of external calibration.
Conventional FTIR, typically measured in the mid-IR, has been widely used to study surface
coatings on CS substrates. The presence or absence of specific bands of the corrosion inhibitor
molecule correlates with the molecule's orientation on the CS surface and/or within the inhibitor
film. This helps in understanding how corrosion inhibitors adsorb on steel surfaces [88].

To evaluate metal and alloy corrosion, monitoring color changes in electrolyte solutions is a
simple method; however, alternative approaches, such as the Standard Immersion Test (SIT),
should also be considered for more accurate results. Fig. 6 illustrates the flowchart of the SIT-
based experimental approach. At the conclusion of the SIT, the corrosion behavior of metals
subjected to corrosive solutions is assessed by measuring the corrosion rate (mm/y).

Preparation
N

Corrosion Potential
Measurement

prepaen)

Surface Analysis

[ Initial Weightﬂ
‘Measurementj

%
Immersion
Test

Weight Loss Electrochemical
Measurement Technique

N |/

[ Surface Analysis]

Y

Data Analysis &
Interpretetiation

Fig. 6. Flowchart of an experimental methodology employed to examine corrosion behavior of steels
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Types of Corrosion

Corrosion interactions are classified into two types based on the characteristics of the
corrosive environments: wet corrosion and dry corrosion. Corrosion can be categorized into
several types [89-97], as shown in Fig. 7, which depend on the environment, substrate type, or
chemical procedure.

General Corrosion

It is also known as uniform corrosion, distinct from dry corrosion; this type of corrosion
uniformly degrades the metal's untreated surface. It may also be characterized as a form of
corrosion that progresses uniformly throughout the entire exposed surface. Oxygen serves as
the primary catalyst for this corrosion. The primary materials susceptible to general corrosion
are steel and cast iron. When subjected to a humid environment, they exhibit a rust-like
appearance.

Intergranular Corrosion

Intergranular corrosion is highly pertinent to the brewing industry. It involves a localized
attack in which a restricted pathway is preferentially corroded along a metal's grain boundaries.
This form of corrosion can significantly affect mechanical properties, leading to reductions in
strength and ductility.

Galvanic Corrosion

Galvanic corrosion typically occurs when two dissimilar conductive materials are
electrically connected and exposed to an electrolyte. Consequently, the subsequent essential
criteria must be satisfied for galvanic corrosion:

1. Various metals or alternative conductors, such as graphite.

2. Electrical contact between dissimilar conductive materials, which may occur by direct
contact or an alternative connection, such as a shared grounding pathway.

3. Electrolyte (the corrosive media) in contact with different conductive materials.

Pitting Corrosion

Pitting corrosion is considered more hazardous than uniform corrosion damage due to its
challenging detection, prediction, and mitigation in design and construction. Pitting corrosion
can result in pits that are either open or enveloped by a semipermeable barrier of corrosion
byproducts. Pits can be either hemispherical or cup-shaped [97].

Crevice Corrosion

Localized corrosion is a type of corrosion. Crevice corrosion happens in small voids or
interstices between two metallic surfaces or between metals and non-metallic surfaces. A
concentration cell is established with the crevice lacking oxygen. The differential aeration
between the cracking (micro-environment) and the exterior surface (bulk environment) imparts
an anodic aspect to the crevice. This may lead to a very corrosive environment within the cracks.
Crevices occur at flanges, deposits, washers, the ends of rolled tubes, and threaded connections,
as shown in Fig. 8 [98].
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Erosion Corrosion

Erosion corrosion is the accelerated degradation or attack on a metal resulting from the
relative motion between a corrosive liquid and the metal surface.

Stress Corrosion Cracking (SCC)

It denotes cracking caused by the simultaneous presence of tensile stress and a corrosive
environment. The influence of SCC on a material often occurs between dry cracking and the
material's fatigue threshold [99].

Selective Leaching
Also referred to as "parting" or "dealloying," it is the specific elimination of one element

from a steel alloy, resulting in a modified residual structure. A typical instance is the selective
extraction of zinc from brass alloy, known as dezincification, as shown in Fig. 8 [100].

¥

Intergranular Corrosion

Pitting Corrosion

Erosion Corrosion Stress Corrosion Cracking

Fig. 7. Different corrosion patterns in carbon steel manufactured parts as observed at the thermal power station
and refinery of Al-Dora-Baghdad, Iraq

Crevice Corrosion Selective Leaching

Fig. 8. Crevice corrosion and selective leaching [98, 100]
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Types of Corrosion Product Produced on CS

The corrosion products that develop on the steel alloy surface are the principal results of the
metal's dissolution. They can significantly influence the current corrosion process. Primarily,
they establish a physical barrier between the alloy and the environment, therefore protecting
the metal by preventing the transfer of dissolved oxygen from saltwater to the metal surface
[101, 102]. Secondly, their porous nature provides a unique habitat for microorganisms present
in a particular environment [103-107]. Thirdly, some phases serve as electronic conductors,
such as magnetite [108, 109] and iron sulfides [110, 111], thereby enhancing the performance
of galvanic cells. The composition of the corrosion product layer varies with the exposure zone
and may change over time. The layers, developed on steel alloy surfaces during laboratory tests
or at seaport exposure locations, illustrate the complex nature of iron chemistry in natural
saltwater. Their composition varies by region (anodic and cathodic), thereby actively
maintaining corrosion cells and promoting localized corrosion processes [112].

Many research investigations have been conducted on corrosion products formed in various
atmospheres using XRD and IR. The corrosion product of CS typically consists of crystalline
iron oxides, hydroxides, and oxide-hydroxides [113, 114]. The shape and dimensions of the
crystals formed depend on the conditions under which they are made. The chemical
composition [115-121] and morphologies of the solid corrosion products were examined based
on the characteristics listed in Table 3. Some of the crystals are shown in Fig. 9.

Table 3. Chemical composition and morphology of corrosion products [54, 122-129]

Corrosion Product Composition Crystal Structure Morphology

Cloudy-shaped, flat and thin sheet, Needle-shaped,
filiform, whiskers, bipyramids, cubes, thin rods,

Goethite o-FeOOH Orthorhombic cotton balls, tiny rods, nest-like, star-like, cotton
ball.
Dense plates, granular, thick sheet, laminar,
Lepidocrocite v-FeOOH Orthorhombic spherical, sandy granules, worm burrow, bird nests,
plumage, or shattered glass, floral, sandy mixture.
Hematite a-Fex0Os Hexagonal -
Feroxyhyte 5-FeOOH Hexagonal Flowery, bent plates.
Akageneite B-FeOOH Monoclinic cylinder, tube, cigar-shaped, plate-like morphology.
Maghemite y-Fe:05 Cubic g?:ickfiz;;gi?/;r,r icnlgr%(;l.llar grain, donut-like,
Magnetite Fe;04 Cubic -

Wustite FeO Cubic -
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Fig. 9. Some of the crystal cellu- of carbon steel corrosion [128]
Corrosion Inhibition

The solubility of metal in the solution affects weight loss, corrosion, and metal instability.
The addition of inhibitors results in a linear decrease in the weight loss in the specimens
proportional to the corrosion rate [129].

Corrosion inhibition is the most cost-effective, practical, and easy method for controlling
corrosion on metals in saltwater environments [130]. Corrosion inhibitors control metal
dissolution and acid consumption. Inhibitors are adsorbed onto the metallic surface. Inhibitors
inhibit the solubility of metals. Inhibitors adsorb onto the metal surface, creating a physical
protective barrier, and interact with anodic and/or cathodic reaction sites to prevent oxidation
and/or reduction of corrosion reactions [131].

Corrosion inhibitors are natural or chemical substances added in low concentrations into
corrosive environments to prevent or minimize (control) corrosion without significantly
reacting with surrounding components [132]. Concentration ranges from (1 to 15,0000) ppm
[133]. Corrosion inhibitors are crucial in various chemical industries, including oil extraction
and processing. The use of corrosion inhibitors in the system minimizes corrosion or slows the
oxidation rate of the metal [134]. Inhibition is a method that prevents damage caused by
corrosive substances by adsorbing inhibitors onto the entire metallic substrate [135, 136].

Inhibitors can be categorized into inorganic and organic types [51]. Inorganic inhibitors
indicate either anodic or cathodic behaviors. The organic inhibitors exhibit mixed cathodic and
anodic activity, as well as adsorption properties. Fig. 10 illustrates the classification of
inhibitors.  Inorganic corrosion inhibitors exhibit superior effectiveness over a wider
temperature range and for longer periods than organic corrosion inhibitors. Organic corrosion
inhibitors, while more expensive than their inorganic counterparts, indicate less toxicity.
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Inorganic Organic
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Fig. 10. Classification of inhibitors

Inhibitor efficiency is determined by the structure and chemical properties of the film formed
on the substrate surface [137]. The inhibitor's efficiency is affected by the substrate surface
condition, the type of corrosive medium, the steel composition, and the inhibitor's chemical
structure [138]. The physical-chemical properties induced by the functional group and the
strength of the inhibitor-metal bond in the molecule affect the adsorption of organic inhibitors
[139]. The variety of organic and inorganic corrosion inhibitors, as well as some green, eco-
friendly, biobased corrosion inhibitors, has been explored for carbon steel applications.

Recent research conducted by various authors on the efficiency of inhibiting different types
of carbon steels in rich chloride solutions is presented in Table 4.
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Table 4. Efficiency of some corrosion inhibitors for different types of carbon steel in salt water at 25 °C

Concentration of

. - . . o
Corrosion Inhibitor Inhibitors Type of Media Steel Type  Efficiency%  Ref.
4-[6-bromo-
benzothiazolylazo] Low carbon
thymol 70 ppm Seawater steel 94.6 [140]
BTAT
Syzygium cumini fruit 500 ppm Seawater LO“; tz:bon 92.99 [141]
10 uL 83.6
Coriandrum sativum 30 uL 138 and 200 mg/L Mild steel 78.5 [142]
50 uL 86.6
API 5L
Aloe vera 300 ppm Seawater Carbon stecl 83.75 [143]
1.2 g was dissolved
Silicate in 100 mL of 3 Saline solution Carbon steel 94 [144]
mol/L NaOH
. 5x10%-5 %1073
Alkanol ammonium salts mol/L 3 % NaCl Carbon steel 96 [145]
250 ppm
Amino Acid L-Histidine 500 ppm 3.5 %NaCl AIST1018 Up to 89 [146]
Carbon steel
1000 ppm
. . . 0 .
New organic ammonium leferegt 35% Sahne Mild steel High [147]
salts concentrations solution
Morinda citrifolia 300 ppm Saline Mild steel 85.1 [148]
environment
25 mg/L 94
50 mg/L 95
Plum tree gum 100 mg/L 3.5% saline water ~ Carbon steel 96 [149]
250 mg/L 97
500 mg/L 97
4-(dimethylamino) -1- .
nonylpyridin-1-ium corll?:frt;irr:ggns 3.5 %NaCl Carbon steel 94 [150]
Bromide((4DMN)
4-(dimethylamino)-1- .
(prop-2-yn-1-yl)pyridine- corifrfgzggns Saline medium  Carbon steel 92 [150]
1-ium Iodide (4DMP)
. o 0.1,0.5,1, 5,10, 0
Sodium silicate and 20 mmol/L 3 % NaCl carbon steel Up to 99.8 [151]
AISI 1015
Cassava leaf (DNA) 20 ppm 3.5% NaCl low-carbon 96.4 [152]
steel
Ficus (FIC) leaf 2 ppm Saline medium Carbon steel 87 [153]
Bis(2-ethylhexyl) 0
phosphate (BEP) 500 ppm 1 % NaCl Carbon steel 93.07 [154]
Curcuma longa 200 ppm Seawater Mild steel 98 [155]
OCtylSﬂa“i‘Z}nznd Ce(III) 400 ppm 0.1 NaClmol/L.  Carbon steel ~96 [156]
(1-{[5-(2 Chloro
N
; . ! 10 ppm 3.5% NaCl Carbon steel 87.05 [157]
dimethyl -6-nitro- 1H
. 20 ppm 90.55
quinolin-2-one
(CPHAQ20))
Imidazole and 0 AISI 1010
Benzimidazole >0 ppm 3% NaCl Carbon steel 73 [158]
Coconut oil-modified 20 ppm 3% NaCl Carbon steel 85 [159]

imidazoline
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Conclusion and Future Prospects

Corrosion of carbon steel in saline environments is a serious concern due to its extensive use
in oceanic structures, pipelines, and industrial applications. Temperature, pH, chloride
concentrations, and exposure length have significant effects on corrosion. To limit material
degradation, it is essential to have a thorough understanding of these variables. A variety of
approaches have been used to investigate corrosion behavior, including weight loss,
electrochemical techniques (potentiodynamic polarization, electrochemical impedance
spectroscopy), and surface analysis instruments (SEM, EDX, XRD, AFM). The weight-loss
method allows direct measurement of the corrosion rate. Electrochemical methods can provide
real-time information, and surface analysis methods can offer insight into morphological and
chemical changes in corrosion-damaged materials. Corrosion prevention has been achieved
through a range of protective strategies, including corrosion inhibitors, protective coatings,
cathodic protection, and nanotechnology-based materials. It is increasingly essential to employ
real-time corrosion monitoring techniques, such as electrochemical sensors and acoustic
emission methods, to detect corrosion early and prevent structural failures. It should be noted,
however, that progress in corrosion research continues, but obstacles remain in creating eco-
friendly inhibitors, increasing coating longevity, and developing real-time monitoring systems.
By developing environmentally friendly corrosion inhibitors and self-healing coatings,
implementing intelligent monitoring systems that leverage artificial intelligence and Internet of
Things-based sensors, and developing alloys and nanotechnology-based coatings, future
corrosion research must focus on sustainable corrosion mitigation. By incorporating emerging
technologies and sustainable materials, carbon steel structures can last longer, require fewer
repairs, and provide greater operational safety in adverse conditions. Industrial applications
benefit from improved material durability and environmental sustainability.

Nomenclature
CR Average corrosion rate (mm/y)
K Conversion factor (3650) of the corrosion rate (mm/y)
W Weight loss (g)
D Density (g/cm?)
T Corrosion exposure time (Day)
A Surface area of the sample (cm?)
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