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Corrosion is a serious engineering and economic problem that affects 

metals and alloys, particularly carbon steel, which is widely used in many 

industrial applications. This review provides a comprehensive overview of 

the corrosion of carbon steels in rich chloride media, beginning with an 

examination of corrosion mechanisms and factors that influence corrosion, 

as well as the types of corrosion and the primary corrosion products (rust). 

It also explores the primary methods used to study and monitor corrosion 

(non-electrochemical and electrochemical techniques), ranging from 

laboratory experiments to advanced analytical techniques. Among the 

strategies to mitigate corrosion, the use of corrosion inhibitors plays a 

crucial role in reducing the corrosion rate of carbon steels. This is especially 

true in harsh environments rich in chloride, which accelerates metal 

degradation. This review also presents previous studies on corrosion in 

chloride-rich waters. It evaluates the effectiveness of various inhibitors in 

controlling corrosion, thereby contributing to the development of efficient 

protective solutions for metals under harsh, aggressive conditions. 

Introduction  

Metal corrosion creates a significant risk to environmental and human health. Corrosion may 

release hazardous metals, including lead, cadmium, and chromium, into soil and water, 

polluting ecosystems and contaminating the food chain.  Moreover, infrastructure deterioration 

can lead to hazardous leaks, compromising water quality and posing immediate health risks. 

Corrosion is not only a matter of material degradation; it also poses significant environmental 

and public health risks. 

The corrosion of metals has a significant impact on several industrial sectors [1–5]. Metals, 

such as steels and alloys, have been widely utilized in industrial and technical applications. 

Moreover, metals are used in the offshore petroleum, power generation, nuclear energy, 

aerospace, shipping, and building industries [6–11]. Corrosion is the irreversible deterioration 

of a metal surface resulting from chemical reactions in which pure metal is converted into more 

chemically stable forms, such as metal oxides, hydroxides, or oxyhydroxides, in a corrosive 

environment. These environments can exist in solid, liquid, or gaseous states and are commonly 
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referred to as electrolytes [12]. Corrosion is a surface process that occurs on the outer layer of 

the metal and manifests itself in several forms: An initial attack on the surface may cause 

general corrosion, leading to a gradual reduction in thickness, or it may cause localized damage, 

leaving only specific areas corroded, as sometimes seen at grain boundaries or in areas of 

weakness resulting from differences in the metal's resistance to the corrosive environment [13]. 

This process is slow, but over time it causes the deterioration of metal machinery and 

equipment, reducing their production efficiency. The annual economic losses resulting from 

various forms of corrosion in India are estimated at $6.5 billion. At the same time, direct waste 

in the United States accounts for approximately 3.2% of gross domestic product [14]. A good 

understanding of corrosion and the application of appropriate and timely solutions are essential 

for controlling it [15]. Furthermore, a special type of corrosion can occur in relatively pure 

water at temperatures around 1300°C on the product side, known as classic hot-spot corrosion 

[16]. Corrosion is widely recognized as a universal phenomenon. Carbon steels (CS), due to 

their excellent mechanical properties [17-19]. In addition to the possibilities for processing 

(welded, chipped, deformed), are an appropriate choice for use in the manufacture of different 

parts of machines, accessories of fall arrest systems such as carabiners, hooks, and pythons, 

vehicle bodies, shipbuilding, or in use in buildings, bridges, rails, water, gas, and industrial 

pipes, cooling tower parts [20-31]. 

This study focuses on carbon steels with carbon at or below ̴ 0.35% to facilitate welding. 

Subsequent differentiation can be based on carbon content. Low-carbon steels (containing 

fewer than 0.15% carbon) have insufficient carbon to harden and are commonly used for hot 

working or to achieve maximum ductility in the annealed state. Steels containing less than 

0.25% carbon, commonly known as mild steel, exhibit increased strength as they approach the 

maximum limit of carbon content. Medium-carbon steels (0.25–0.55% carbon) are frequently 

heat-treated (quenching and tempering) to attain greater strength; however, this review focuses 

mainly on compositions below 0.35% carbon [32]. CS may become corroded during industrial 

operations; thus, corrosion inhibition is sometimes crucial for safe, economical operations, 

enabling prolonged use of CS. This review examines CS as the most suitable alloy for pipeline 

construction to transport water, oil, and gas. The majority of corrosion problems in the water, 

oil, and gas industries are related to pipelines and their exposure environments, which determine 

the appropriate CS type. This article presents an in-depth examination of the corrosion 

characteristics of CS in saline solutions, focusing on the fundamental electrochemical 

processes, key influencing variables, and various experimental methodologies used to assess 

corrosion rates. Furthermore, it analyzes multiple mitigation measures, including the use of 

corrosion inhibitors. This study reviews recent research to identify contemporary challenges, 

knowledge gaps, and emerging trends in corrosion science. The insights provided aim to 

enhance the effectiveness and sustainability of corrosion prevention techniques, particularly in 

the shipping, industrial, and oil and gas sectors. 

Corrosion Mechanism 

Corrosion is characteristic due to chemical (dry corrosion) or electrochemical (wet 

corrosion) interactions with its surroundings. Nonmetals are excluded from the current 

definition [32]. The breaking down of reactions into partial oxidation and reduction processes 

is referred to as electrochemical [33]. For corrosion, these reactions must be performed [34]. 

Corrosion happens at the anode. At the point of the anode, oxidation, or the loss of electrons 

from the metal, occurs. The metal with the greater reduction potential is often referred to as the 

anode. The anodic metal is oxidized to its corresponding cation by losing electrons.  
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𝑀 → 𝑀 + 𝑛𝑒−  (1) 

At the cathode, reduction occurs, wherein the metal receives electrons from the anode. This 

may occur through the evolution of hydrogen and/or the absorption of oxygen. 

By Hydrogen Evolution 

It is the corroding process during which hydrogen is released. The process often occurs in 

an acidic or alkaline medium, when H+ ions absorb anodic electrons and release hydrogen. 

   2𝐻+ + 2𝑒− → 𝐻2(𝑔𝑎𝑠)      (2) 

 

For example, Fe metal reaction at anode: 

 

𝐹𝑒 → 𝐹𝑒2+ + 2𝑒⁻                                                                                                                           (3) 

And reaction at the cathode: 

2𝐻₂𝑂 + 2𝑒− → 𝐻₂ (𝑔𝑎𝑠)                                                                                                                         (4) 

Overall cell reaction: 

𝐹𝑒 + 2𝐻2𝑂 → 𝐹𝑒2+ + 𝐻2 (𝑔𝑎𝑠)                                                                                                              (5) 

 

By Absorption of Oxygen 

It is the corrosion process involving the absorption of oxygen. This typically occurs in a 

neutral liquid, with NaCl serving as the conducting medium, as shown in Fig. 1, where O2 is 

absorbed to produce OH- ions. 

1

2
𝑂₂ + 𝐻₂𝑂 + 2𝑒⁻ → 2𝑂𝐻⁻                                                                                                                    (6) 

For example, at the anode, the carbon steel reaction is: 

𝐹𝑒 → 𝐹𝑒2+ + 2𝑒⁻                                                                                                                                            (7) 

and at the cathode is: 

1

2
𝑂₂ + 𝐻₂𝑂 + 2𝑒⁻ → 2𝑂𝐻⁻                                                                                                                         (8) 

Overall reaction: 

Formation of Fe2+ ions at the anode and OH- ions released at the cathode, which come to 

form iron hydroxide [Fe (OH)2] [35]. 

 

𝐹𝑒2+ + 2𝑂𝐻⁻ → 𝐹𝑒(𝑂𝐻)₂                                                                                                                                 (9) 
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Fig. 1. Schematic representation of carbon steel immersed in NaCl solution (a) Mechanism [36], and (b) 

Corrosion layer formation on the steel’s surface 

Factors Affecting the Corrosion Process  

Numerous internal and environmental variables directly or indirectly influence corrosion; 

some of these elements are illustrated in Fig. 2. We will focus on the nature of the metal and 

natural corrosion environment. Additional factors influencing corrosion include metal purity, 

surface coating characteristics, properties of the corrosive product, temperature, dissolved salt 

concentration, air humidity, and electrolyte pH. 

Nature of Alloy or Metal  

It further depends upon: 

Galvanic Series Position 

When different metals are electrically connected in a specific electrolyte, the metal with the 

higher oxidation potential (i.e., higher in the electrochemical series) corrodes, while the other 

metal remains protected. The rate of corrosion depends directly on the electrochemical 

difference between the two metals; the greater the difference, the faster the corrosion. The 

susceptibility of metals to corrosion is illustrated in Fig. 3. For example, in the presence of 

copper and cast iron in the same electrolytic medium, the cast iron corrodes first. In contrast, 

the copper remains protected from corrosion. 

Purity of Alloy or Metal 

The corrosion rate typically increases with rising impurity levels. This occurs because 

impurities form small electrochemical cells in which the anodic component corrodes. For 

instance, zinc with impurities such as iron or lead exhibits accelerated corrosion. 
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Nature of the Surface Film 

A thin layer of oxides forms on the surfaces of all metals in an aerated environment. The 

effectiveness of this layer is determined by the volume ratio between the metal oxide and the 

original metal, known as the ‘specific volume ratio.’ In light of this, the higher this ratio, the 

lower the rate of metal oxidation. 

Nature of Corrosion Product 

The corrosion rate accelerates when the corrosion product is soluble in the corrosive 

medium, as this allows the reaction to continue at the metal surface. The volatile product 

evaporates immediately after formation, exposing the metal to further attack and thereby 

increasing the rate of rust formation. 

Alloy or Metal Grain Size 

The mechanical characteristics of low-carbon steel are predominantly influenced by ferrite 

particle size, with finer grains being advantageous for mechanical traits [37-39]. Nevertheless, 

the high energy and chemical reactivity of grain boundaries result in a higher density of these 

boundaries, which enhances surface reactivity by improving electron activity and diffusion, 

thereby influencing corrosion resistance. Enhanced corrosion resistance extends the durability 

of steel buildings [40–45]. Consequently, examining the effects of grain size on the corrosion 

resistance of low-carbon steel is a significant topic. 

Nature of corrosive environment 

It further requires: 

High temperature: The rate of corrosion increases sharply with rising temperature, doubling 

with every 10 °C increase, provided that other biological and chemical factors remain constant 

[46]. This behavior is often depicted as an exponential curve, showing the direct effect of heat; 

however, the reality is more complex, as thermal changes also affect the effectiveness of other 

factors, such as ion transport, gas dissolution (especially oxygen), and the properties of the 

protective layer formed on the metal surface. The effect of increased temperature is evident in 

two main ways: first, by accelerating electrochemical reactions through higher molecular 

energy and more frequent effective collisions; and second, by modifying intermediate factors, 

such as solubility, ion transport, and microbial activity, adding further depth and complexity to 

the underlying exponential curve. 

Media humidity: The rate of corrosion increases significantly when a certain level of relative 

humidity, known as the critical humidity, is exceeded, as the iron oxide layer's ability to absorb 

atmospheric humidity enhances electrochemical corrosion. The available moisture provides the 

metal surface with the electrolyte needed to form an effective electrochemical cell, thereby 

accelerating oxidation and recovery reactions at the metal interface. 

Effect of dissolved salts in media: The corrosion rate initially increases with increasing salt 

content, then gradually decreases to a value lower than that in distilled water once the 

concentration reaches saturation. Different types of salts, such as sodium chloride, alkali metal 

salts, alkaline earth metal salts, and acid salts, affect the corrosion behavior of iron and steel in 

various ways, depending on their ability to alter the properties of the oxide layer and the ion 

conductivity in solution [47]. 

Effect of pH in media: pH is the most critical factor in determining corrosion rate; a decrease 

in pH is usually accompanied by a significant increase in corrosion rate, indicating that acidic 

media (pH below 7) are more corrosive than neutral or alkaline media [48]. 

Effect of dissolved oxygen in media: Dissolved oxygen plays a critical and complicated 

function in the corrosion of metals. Oxygen participates in cathodic processes on the metal 
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surface in neutral, alkaline, and acidic environments.  Therefore, corrosion is necessary for its 

occurrence.  In the absence of dissolved oxygen, corrosion in neutral and alkaline solutions 

diminishes to nearly nothing.  An increase in dissolved oxygen content, due to its participation 

in cathodic processes, promotes corrosion.  What would occur if we were to inject increasing 

amounts of water infused with oxygen?  It has been established that oxygen, under specific 

conditions (in high-purity water) and at elevated temperatures, can form a thick, protective 

coating of metal oxides on the metal surface, thereby reducing corrosion [49]. 

 

 
Fig. 2. Some of the factors affecting the corrosion process 

 
Fig. 3. Corrosion susceptibility of the metal 

Methods for Studying Corrosion 

Non-Electrochemical Technique (Weight Loss Method) 

This is a gravimetric technique in which the weight of a carbon steel sample is measured 

before and after exposure to a corrosive environment (e.g., a saline solution). The difference in 

weight is used to calculate the corrosion rate according to the following equation [50]: 

 

 

𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =
𝐾 𝑊

𝐷× 𝑇 ×𝐴
                                                                                                                           (10) 
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The corrosion rate can be characterized as an increase per unit in the depth of corrosion over 

time, measured in mils per year (mpy) or as weight loss per unit area per time, often in 

milligrams per square decimeter per day (mdd) or as the corrosion current (mA.cm-2). The 

standard SI unit for denoting corrosion rate is millimeters per year (mm/y) or inches per year 

(in/y). Table 1 illustrates the corrosion resistance classification of CS. 

Table 1. The comparison of the corrosion resistance classification of CS [51] 

Relative Corrosion Resistance 
Approximate Corrosion Rate 

Mpy mm/y 

Outstanding More than 1 More than 0.02 

Excellent 1-5 0.002-0.1 

Good 5-20 0.1-0.5 

Fair 20-50 0.5-1 

Poor 50-200 1-5 

Unacceptable Less than 200 Less than 5 

 

Many researchers [52-58] have measured the corrosion rate of different types of carbon steel 

in different chloride media at 25 °C of immersion, as shown in Table 2. 

Table 2. Corrosion rates of various types of carbon steels in different chloride media 

Types of Carbon Steel Type of Salt Solution Total Immersion Time Corrosion Rate Ref. 

Low carbon steel Marine water 24 months 500 mm/y [52] 

Low carbon steel Seawater 28 days 0.037 mm/y [53] 

Low carbon steel Lake Water 28 days 0.045 mm/y [53] 

Low carbon steel Tap Water 28 days 0.04 mm/y [53] 

Medium carbon steel Banda Aceh's 12 months 0.015 mpy [54] 

Carbon steel Seawater 288 hours 0.18 mm/h [55] 

Carbon steel Beibu Gulf Tidal Zone 360 days 600 mm/day [56] 

Mild Steel 1% NaCl 28 days 0.788 mpy [57] 

Mild Steel 3% NaCl 28 days 0.687 mpy [57] 

Mild Steel 5% NaCl 28 days 0.360 mpy [57] 

Mild Steel 7% NaCl 28 days 0.779 mpy [57] 

Mild Steel 10% NaCl 28 days 0.315 mpy [57] 

Mild Steel Salt water 5 weeks 1.0622 mm/y [58] 

 

Electrochemical Techniques for Studying Corrosion of Carbon Steel 

The most commonly employed electrochemical techniques are the potentiodynamic 

polarization technology (Tafel) combined with electrochemical impedance spectroscopy (EIS) 

[59, 60]. The primary benefit of electrochemical methods, beyond weight-loss techniques, is 

the ability to obtain additional information on corrosion mechanisms. Electrochemical 

procedures are typically conducted in a three-electrode setup comprising a working electrode, 

a reference electrode, and a counter electrode [61]. The impact of corrosion inhibitors has been 

investigated by modifying the extract concentration, testing temperature, and liquid flow rate. 

Electrochemical analysis is an efficient, rapid, and straightforward method [62]. 

Potentiodynamic polarization yields several electrochemical characteristics, including 

corrosion potential (Ecorr.), corrosion current density (Icorr.), anodic slope (βa), and cathodic 

slope (βc). Electrochemical impedance spectroscopy can accurately estimate corrosion rate with 

minimal impact on the electrode. Various electrochemical techniques are available to assess the 

extent of corrosion in metals and the efficiency and mechanisms of corrosion inhibitors. 
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Potentiodynamic Polarization (Tafel) 

The potentiodynamic polarization technique is widely employed, consisting of applying a 

polarization current density and measuring the resulting electrode potential [63, 64]. 

Polarization curves (Anodic and cathodic) represent the relationship between polarization, 

electrical current density, and electrode potential. However, when the potentiodynamic 

polarization curve is excessively steep, significant deviations occur, preventing the formation 

of a standard potentiodynamic polarization curve. Fig. 4 shows a potentiodynamic polarization 

curve.  

 

 
Fig. 4. Potentiodynamic polarization curve diagram 

  

Electrochemical Impedance Spectroscopy (EIS) 

Electrochemical Impedance Spectroscopy (EIS) quantifies the impedance of an electrode 

system over an extensive frequency range, employing a small-amplitude sinusoidal potential as 

the perturbation signal to achieve a nearly linear relationship between the system's response and 

the perturbation. EIS is a prevalent testing method that has little effect on the electrode surface 

condition. Consequently, it is widely used in scientific research and constitutes a significant 

methodology for electrochemical testing [65, 66]. In the analogous circuit, Rs denotes the 

resistance of the electrolyte solution between the working electrode and the reference electrode, 

Rct denotes the charge-transfer resistance associated with the corrosion process at the metal-

electrolyte interface, and CPE denotes the constant phase element. In corrosion science, EIS 

provides data on corrosion resistance, variations in electrode surface roughness, adsorption of 

corrosion inhibitors, and the formation of corrosion products. In contrast to other conventional 

electrochemical techniques, such as potentiodynamic polarization curves, EIS provides 

enhanced insights into corrosion kinetics, as shown in Fig. 5. 
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Fig. 5. Schematic diagram of electrochemical impedance spectroscopy 

 

Surface Characterization Techniques  

This section examines surface analytical methods for characterizing carbon steel surfaces, 

both treated and untreated (e.g., corrosion inhibitors), in corrosive environments. The 

discussion addresses aspects that affect the use of specific approaches in carbon-steel corrosion 

research, including high surface roughness under corrosive conditions [67]. 

Scanning Electrochemical Microscopy (SEM) 

Employing scanning electron microscopy (SEM), an accurate imaging technique that 

provides high-resolution images of metallic surfaces, enables a comprehensive examination of 

corrosion, protective films, and the underlying metal substrates [68, 69]. This approach involves 

directing an electron beam at a sample, which produces secondary electrons via surface contact. 

The electrons are subsequently collected to provide a high-quality image [70]. A key benefit of 

scanning electron microscopy is its flexibility, allowing applications in environmental 

chambers, both high- and low-vacuum environments, and the investigation of corrosion 

processes under various conditions [71]. SEM can be used in conjunction with multiple 

techniques, such as X-ray spectroscopy, to chemically analyze corrosion products and 

determine the type of corrosion and its source. SEM is a crucial tool for examining corrosion, 

as it can potentially identify localized corrosion sites and provide data on the concentration of 

active corrosion species, thereby advancing the understanding of localized corrosion in specific 

areas. It also provides valuable insights into inhibitors to improve protective methods and 

enhance the useful lifetime of metal structures. Research evaluated the performance of a newly 

developed organic corrosion inhibitor using SEM. 

Energy Dispersive X-ray Spectroscopy (EDX) 

 EDX is a chemical analysis method that employs a high-energy electron beam to target 

substances, excite electrons from inner shells, and concurrently emit X-ray photons. The energy 

content of these photons is characteristic of the emitting element, facilitating the examination 

of the sample's chemical structure. SEM-EDX is a high-magnification, stereoscopic microscopy 

technique employed for the analysis of healing products. It uses a high-energy, concentrated 

electron beam to examine materials, revealing physical information about the specimen's 

surface topography. This technique is frequently employed to ascertain crystal structure, shape, 

dimensions, and distribution. Backscattered SEM images are used to assess the interface 
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composition. SEM/EDX is a method that offers an optical representation of a surface together 

with the elemental composition of selected regions [72-76]. 

Atomic Force Microscopy (AFM) 

Atomic force microscopy enables the examination of surface topography, including 

measurements of surface roughness. Assessing the adhesion of an inhibitor or corrosive coating 

on a substrate (metal or alloy) using topographical imaging alone has consistently posed 

challenges. Moreover, capturing topographical photos might be challenging due to the irregular 

film development. Consequently, AFM current images and force-distance curves are used to 

provide further insights into the characteristics of surface layers, including the adhesion of 

corrosion inhibitors and coatings [77, 78]. AFM can operate under various liquid conditions 

and enables real-time surface monitoring in corrosive environments [79, 80].  

X-ray Diffraction Spectroscopy (Synchrotron-Sourced) 

Grating-induced X-ray diffraction (GI-XRD) is an effective method for studying interfacial 

chemistry at the solid-liquid interface; however, its traditional application suffers from a low 

signal-to-noise ratio, which can lead to inaccurate conclusions about phase evolution. This 

challenge is exacerbated when analyzing thin films—such as corrosion inhibitor layers—on 

carbon steel, as surface roughness in corrosive environments reduces the received signal. 

Synchrotron-radiation-induced X-ray diffraction (SR-XRD) addresses these limitations by 

providing a high signal-to-noise ratio sufficient for examining thin films on carbon steel even 

under aggressive corrosion conditions. SR-XRD has high resolution due to the use of a parallel 

beam, which reduces peak broadening at low angles of incidence. Additionally, it features high 

brightness, high intensity, tight collimation, and low emission polarization, making it the 

preferred choice of crystallographers [81]. 

It is also necessary to monitor the transformations undergone by corrosion products under 

different conditions and to conduct in situ corrosion tests. In carbon dioxide environments 

where oxygen is consumed, carbon steel forms iron carbonate as a by-product, which may 

oxidize when subsequently exposed to oxygen-rich conditions. It has also been demonstrated 

that combining field SR-GI-XRD with additional electrochemical methods such as cyclic 

voltammetry and electrochemical impedance spectroscopy provides a deeper mechanistic 

understanding of electrochemical reactions on copper surfaces [82, 83]. 

X-ray Photoelectron Spectroscopy (XPS) 

XPS is a quantitative spectroscopic method that provides information on the elemental 

composition at parts-per-thousand levels depending on the electronic and chemical state of the 

surface being examined. This technique has been widely used in corrosion research to 

characterize the composition of metal surfaces, particularly corrosion products. For example, 

researchers applied it to carbon steel exposed to seawater, and three-dimensional analyses 

revealed the absence of an iron signal in the spectrum, indicating that the surface was 

completely covered with a corrosion product layer [84]. The presence of iron in both metallic 

and oxidized states was associated with the formation of oxides, as confirmed by Raman 

spectroscopy and X-ray diffraction. In addition, XPS was used in the qualitative analysis of 

surface films to measure the effectiveness of protective layers, such as studying the formation 

of iron carbonates on carbon steel surfaces [85] and examining the presence of hydroxide ions 

within the layer to assess its cohesion and protective properties [86]. 
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Raman Spectroscopy (IR) 

Raman spectroscopy (IR) has been recognized as a crucial surface characterization technique 

for corrosion investigations, applicable to assessing both single-layer and multilayer surface 

properties. Raman spectroscopy provides insights into surface interactions (vibrational data), 

thereby offering structural information regarding the contact between the metal substrate and 

corrosion inhibitor [87]. 

Fourier Transform Infrared Spectroscopy (FTIR) 

Unique molecular fingerprints can be generated from the absorption and transmission of 

infrared light. The quality and quantity of individual components in samples may be determined 

using FTIR. IR, a dispersive IR method, was employed in previous investigations. Currently, 

FTIR is widely used for its several benefits, including accurate measurements, rapid data 

collection, high sensitivity, non-destructive analysis, and the absence of external calibration. 

Conventional FTIR, typically measured in the mid-IR, has been widely used to study surface 

coatings on CS substrates. The presence or absence of specific bands of the corrosion inhibitor 

molecule correlates with the molecule's orientation on the CS surface and/or within the inhibitor 

film. This helps in understanding how corrosion inhibitors adsorb on steel surfaces [88].  

To evaluate metal and alloy corrosion, monitoring color changes in electrolyte solutions is a 

simple method; however, alternative approaches, such as the Standard Immersion Test (SIT), 

should also be considered for more accurate results. Fig. 6 illustrates the flowchart of the SIT-

based experimental approach. At the conclusion of the SIT, the corrosion behavior of metals 

subjected to corrosive solutions is assessed by measuring the corrosion rate (mm/y).  

 
Fig. 6. Flowchart of an experimental methodology employed to examine corrosion behavior of steels 
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Types of Corrosion  

Corrosion interactions are classified into two types based on the characteristics of the 

corrosive environments: wet corrosion and dry corrosion. Corrosion can be categorized into 

several types [89-97], as shown in Fig. 7, which depend on the environment, substrate type, or 

chemical procedure. 

General Corrosion 

It is also known as uniform corrosion, distinct from dry corrosion; this type of corrosion 

uniformly degrades the metal's untreated surface. It may also be characterized as a form of 

corrosion that progresses uniformly throughout the entire exposed surface. Oxygen serves as 

the primary catalyst for this corrosion. The primary materials susceptible to general corrosion 

are steel and cast iron. When subjected to a humid environment, they exhibit a rust-like 

appearance. 

Intergranular Corrosion 

Intergranular corrosion is highly pertinent to the brewing industry. It involves a localized 

attack in which a restricted pathway is preferentially corroded along a metal's grain boundaries. 

This form of corrosion can significantly affect mechanical properties, leading to reductions in 

strength and ductility. 

Galvanic Corrosion 

Galvanic corrosion typically occurs when two dissimilar conductive materials are 

electrically connected and exposed to an electrolyte. Consequently, the subsequent essential 

criteria must be satisfied for galvanic corrosion: 

1. Various metals or alternative conductors, such as graphite.  

2. Electrical contact between dissimilar conductive materials, which may occur by direct 

contact or an alternative connection, such as a shared grounding pathway. 

3. Electrolyte (the corrosive media) in contact with different conductive materials. 

Pitting Corrosion 

Pitting corrosion is considered more hazardous than uniform corrosion damage due to its 

challenging detection, prediction, and mitigation in design and construction. Pitting corrosion 

can result in pits that are either open or enveloped by a semipermeable barrier of corrosion 

byproducts. Pits can be either hemispherical or cup-shaped [97]. 

Crevice Corrosion 

Localized corrosion is a type of corrosion. Crevice corrosion happens in small voids or 

interstices between two metallic surfaces or between metals and non-metallic surfaces. A 

concentration cell is established with the crevice lacking oxygen. The differential aeration 

between the cracking (micro-environment) and the exterior surface (bulk environment) imparts 

an anodic aspect to the crevice. This may lead to a very corrosive environment within the cracks. 

Crevices occur at flanges, deposits, washers, the ends of rolled tubes, and threaded connections, 

as shown in Fig. 8 [98]. 
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Erosion Corrosion 

Erosion corrosion is the accelerated degradation or attack on a metal resulting from the 

relative motion between a corrosive liquid and the metal surface. 

Stress Corrosion Cracking (SCC) 

It denotes cracking caused by the simultaneous presence of tensile stress and a corrosive 

environment. The influence of SCC on a material often occurs between dry cracking and the 

material's fatigue threshold [99]. 

Selective Leaching 

Also referred to as "parting" or "dealloying," it is the specific elimination of one element 

from a steel alloy, resulting in a modified residual structure. A typical instance is the selective 

extraction of zinc from brass alloy, known as dezincification, as shown in Fig. 8 [100]. 

 
 

Fig. 7. Different corrosion patterns in carbon steel manufactured parts as observed at the thermal power station 

and refinery of Al-Dora-Baghdad, Iraq 

 

 
Fig. 8. Crevice corrosion and selective leaching [98, 100] 
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Types of Corrosion Product Produced on CS 

The corrosion products that develop on the steel alloy surface are the principal results of the 

metal's dissolution. They can significantly influence the current corrosion process. Primarily, 

they establish a physical barrier between the alloy and the environment, therefore protecting 

the metal by preventing the transfer of dissolved oxygen from saltwater to the metal surface 

[101, 102]. Secondly, their porous nature provides a unique habitat for microorganisms present 

in a particular environment [103-107]. Thirdly, some phases serve as electronic conductors, 

such as magnetite [108, 109] and iron sulfides [110, 111], thereby enhancing the performance 

of galvanic cells. The composition of the corrosion product layer varies with the exposure zone 

and may change over time. The layers, developed on steel alloy surfaces during laboratory tests 

or at seaport exposure locations, illustrate the complex nature of iron chemistry in natural 

saltwater. Their composition varies by region (anodic and cathodic), thereby actively 

maintaining corrosion cells and promoting localized corrosion processes [112]. 

Many research investigations have been conducted on corrosion products formed in various 

atmospheres using XRD and IR. The corrosion product of CS typically consists of crystalline 

iron oxides, hydroxides, and oxide-hydroxides [113, 114]. The shape and dimensions of the 

crystals formed depend on the conditions under which they are made. The chemical 

composition [115-121] and morphologies of the solid corrosion products were examined based 

on the characteristics listed in Table 3. Some of the crystals are shown in Fig. 9.  
 

Table 3. Chemical composition and morphology of corrosion products [54, 122-129] 

Corrosion Product Composition Crystal Structure Morphology 

Goethite α-FeOOH Orthorhombic 

Cloudy-shaped, flat and thin sheet, Needle-shaped, 

filiform, whiskers, bipyramids, cubes, thin rods, 

cotton balls, tiny rods, nest-like, star-like, cotton 

ball. 

Lepidocrocite γ-FeOOH Orthorhombic 

Dense plates, granular, thick sheet, laminar, 

spherical, sandy granules, worm burrow, bird nests, 

plumage, or shattered glass, floral, sandy mixture. 

Hematite α-Fe2O3 Hexagonal - 

Feroxyhyte δ-FeOOH Hexagonal Flowery, bent plates. 

Akageneite β-FeOOH Monoclinic cylinder, tube, cigar-shaped, plate-like morphology. 

Maghemite γ-Fe2O3 Cubic 
Dark flat layer, circular grain, donut-like, 

Black circular rings. 

Magnetite Fe3O4 Cubic - 

Wustite FeO Cubic - 
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Fig. 9. Some of the crystal cellس of carbon steel corrosion [128] 

Corrosion Inhibition 

The solubility of metal in the solution affects weight loss, corrosion, and metal instability.  

The addition of inhibitors results in a linear decrease in the weight loss in the specimens 

proportional to the corrosion rate [129]. 

Corrosion inhibition is the most cost-effective, practical, and easy method for controlling 

corrosion on metals in saltwater environments [130]. Corrosion inhibitors control metal 

dissolution and acid consumption. Inhibitors are adsorbed onto the metallic surface. Inhibitors 

inhibit the solubility of metals. Inhibitors adsorb onto the metal surface, creating a physical 

protective barrier, and interact with anodic and/or cathodic reaction sites to prevent oxidation 

and/or reduction of corrosion reactions [131].  

Corrosion inhibitors are natural or chemical substances added in low concentrations into 

corrosive environments to prevent or minimize (control) corrosion without significantly 

reacting with surrounding components [132]. Concentration ranges from (1 to 15,0000) ppm 

[133]. Corrosion inhibitors are crucial in various chemical industries, including oil extraction 

and processing. The use of corrosion inhibitors in the system minimizes corrosion or slows the 

oxidation rate of the metal [134]. Inhibition is a method that prevents damage caused by 

corrosive substances by adsorbing inhibitors onto the entire metallic substrate [135, 136]. 

Inhibitors can be categorized into inorganic and organic types [51].  Inorganic inhibitors 

indicate either anodic or cathodic behaviors.  The organic inhibitors exhibit mixed cathodic and 

anodic activity, as well as adsorption properties.  Fig. 10 illustrates the classification of 

inhibitors.  Inorganic corrosion inhibitors exhibit superior effectiveness over a wider 

temperature range and for longer periods than organic corrosion inhibitors.  Organic corrosion 

inhibitors, while more expensive than their inorganic counterparts, indicate less toxicity.  
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Fig. 10. Classification of inhibitors 

Inhibitor efficiency is determined by the structure and chemical properties of the film formed 

on the substrate surface [137]. The inhibitor's efficiency is affected by the substrate surface 

condition, the type of corrosive medium, the steel composition, and the inhibitor's chemical 

structure [138]. The physical-chemical properties induced by the functional group and the 

strength of the inhibitor-metal bond in the molecule affect the adsorption of organic inhibitors 

[139]. The variety of organic and inorganic corrosion inhibitors, as well as some green, eco-

friendly, biobased corrosion inhibitors, has been explored for carbon steel applications. 

Recent research conducted by various authors on the efficiency of inhibiting different types 

of carbon steels in rich chloride solutions is presented in Table 4. 
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Table 4. Efficiency of some corrosion inhibitors for different types of carbon steel in salt water at 25 oC 

Corrosion Inhibitor 
Concentration of 

Inhibitors 
Type of Media Steel Type Efficiency% Ref. 

4-[6-bromo- 

benzothiazolylazo] 

thymol 

BTAT 

70 ppm Seawater 
Low carbon 

steel 
94.6 [140] 

Syzygium cumini fruit 500 ppm Seawater 
Low carbon 

steel 
92.99 [141] 

Coriandrum sativum 

10 µL 

30 µL 

50 µL 

138 and 200 mg/L Mild steel 

83.6 

78.5 

86.6 

[142] 

Aloe vera 300 ppm Seawater 
API 5L 

Carbon steel 
83.75 [143] 

Silicate 

1.2 g was dissolved 

in 100 mL of 3 

mol/L NaOH 

Saline solution Carbon steel 94 [144] 

Alkanol ammonium salts 
5×10-4 - 5 ×10-3 

mol/L 
3 % NaCl Carbon steel 96 [145] 

Amino Acid L-Histidine 

250 ppm 

500 ppm 

1000 ppm 

3.5 %NaCl 
AISI 1018 

Carbon steel 
Up to 89 [146] 

New organic ammonium 

salts 

Different 

concentrations 

3.5 % Saline 

solution 
Mild steel High [147] 

Morinda citrifolia 300 ppm 
Saline 

environment 
Mild steel 85.1 [148] 

Plum tree gum 

25 mg/L 

50 mg/L 

100 mg/L 

250 mg/L 

500 mg/L 

3.5% saline water Carbon steel 

94 

95 

96 

97 

97 

[149] 

4-(dimethylamino) -1-

nonylpyridin-1-ium 

Bromide((4DMN) 

Different 

concentrations 
3.5 %NaCl Carbon steel 94 [150] 

4-(dimethylamino)-1-

(prop-2-yn-1-yl)pyridine-

1-ium Iodide (4DMP) 

Different 

concentrations 
Saline medium Carbon steel 92 [150] 

Sodium silicate 
0.1, 0.5, 1, 5, 10, 

and 20 mmol/L 
3 % NaCl carbon steel Up to 99.8 [151] 

Cassava leaf (DNA) 20 ppm 3.5% NaCl 

AISI 1015 

low-carbon 

steel 

96.4 [152] 

Ficus (FIC) leaf 2 ppm Saline medium Carbon steel 87 [153] 

Bis(2-ethylhexyl) 

phosphate (BEP) 
500 ppm 1 % NaCl Carbon steel 93.07 [154] 

Curcuma longa 200 ppm Seawater Mild steel 98 [155] 

Octylsilanol and Ce(III) 

ions 
400 ppm 0.1 NaCl mol/L Carbon steel >96 [156] 

(1-{[5-(2 Chloro 

phenylazo)-2- hydroy-

benzylidene]-amino}-4,7-

dimethyl -6-nitro- 1H 

quinolin-2-one 

(CPHAQ2O)) 

5 ppm 

10 ppm 

20 ppm 

3.5% NaCl Carbon steel 

86.82 

87.05 

90.55 

[157] 

Imidazole and 

Benzimidazole 
50 ppm 3% NaCl 

AISI 1010 

Carbon steel 
73 [158] 

Coconut oil-modified 

imidazoline 
20 ppm 3% NaCl Carbon steel 85 [159] 
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Conclusion and Future Prospects 

Corrosion of carbon steel in saline environments is a serious concern due to its extensive use 

in oceanic structures, pipelines, and industrial applications. Temperature, pH, chloride 

concentrations, and exposure length have significant effects on corrosion. To limit material 

degradation, it is essential to have a thorough understanding of these variables. A variety of 

approaches have been used to investigate corrosion behavior, including weight loss, 

electrochemical techniques (potentiodynamic polarization, electrochemical impedance 

spectroscopy), and surface analysis instruments (SEM, EDX, XRD, AFM). The weight-loss 

method allows direct measurement of the corrosion rate. Electrochemical methods can provide 

real-time information, and surface analysis methods can offer insight into morphological and 

chemical changes in corrosion-damaged materials. Corrosion prevention has been achieved 

through a range of protective strategies, including corrosion inhibitors, protective coatings, 

cathodic protection, and nanotechnology-based materials. It is increasingly essential to employ 

real-time corrosion monitoring techniques, such as electrochemical sensors and acoustic 

emission methods, to detect corrosion early and prevent structural failures. It should be noted, 

however, that progress in corrosion research continues, but obstacles remain in creating eco-

friendly inhibitors, increasing coating longevity, and developing real-time monitoring systems. 

By developing environmentally friendly corrosion inhibitors and self-healing coatings, 

implementing intelligent monitoring systems that leverage artificial intelligence and Internet of 

Things-based sensors, and developing alloys and nanotechnology-based coatings, future 

corrosion research must focus on sustainable corrosion mitigation. By incorporating emerging 

technologies and sustainable materials, carbon steel structures can last longer, require fewer 

repairs, and provide greater operational safety in adverse conditions. Industrial applications 

benefit from improved material durability and environmental sustainability. 

Nomenclature 

CR Average corrosion rate (mm/y) 

K Conversion factor (3650) of the corrosion rate (mm/y) 

W Weight loss (g) 

D Density (g/cm3) 

T Corrosion exposure time (Day) 

A 

 

 

Surface area of the sample (cm2) 
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