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 Abstract 
  In oil industry, spontaneous imbibition is an important phenomenon in recovery from fractured 

reservoirs which can be defined as spontaneous uptake of a wetting fluid into a porous solid. 
Spontaneous imbibition involves both cocurrent and countercurrent flows. When a matrix block is 
partially covered by water, oil recovery is dominated by cocurrent imbibition i.e. the production of 
non wetting phase has the same direction of flow as the wetting phase. However if the matrix block is 
completely covered by water then countercurrent flow takes place, and the production of non wetting 
phase has an opposite direction of flow to that of the imbibing wetting phase. Each of these processes 
can be described by a nonlinear partial differential equation (PDE). In this paper, the homotopy 
perturbation method (HPM) which is a powerful series-based analytical tool, is used to approximate 
the solutions of cocurrent and countercurrent equations. HPM decomposes a complex partial 
differential equation under study to a series of simple ordinary differential equations that are easy to 
be solved. The solutions obtained by HPM are compared with that found using a common numerical 
method applied by MATLAB software. The difference between the two is seemed to be virtually 
negligible. A good agreement is also achieved from the comparison of the solutions obtained by HPM 
with those of a numerical method (NM).  
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Introduction 
    Fractured petroleum reservoirs represent 
over 20% of the world's oil and gas reserves 
[1]. Fractured reservoirs are composed of 
interconnected pores (matrix system) and 
channels (fracture system). Usually matrix 
system contains most of the fluid in place 
but it has low permeability. The 
interconnected fracture system provides the 
main flow paths and a low storage volume. 
Most of the major naturally fractured 
reservoirs have active aquifers associated 
with them, or would eventually resort to 
some kind of secondary recovery process 
such as waterflooding [2]. During water 
injection or aquifer water movement, if 
capillary forces are strong, water imbibes as 
the wetting phase into the matrix blocks and 
discharges oil as non-wetting phase out of 
the block. Imbibition can occur in a 
reservoir in both countercurrent and 
cocurrent flow modes in proportions that 

depend on the ratio of gravity to capillary 
forces and on the conditions applied to the 
boundaries of the blocks. When a matrix 
block is partially covered by water, oil 
recovery is dominated by cocurrent 
imbibition, the production of non wetting 
phase has the same direction of flow as the 
wetting phase. However if the matrix block 
is completely covered by water then 
countercurrent flow takes place, and the 
production of non wetting phase has an 
opposite direction of flow to that of the 
imbibing wetting phase [3-7]. Figures 1, 2 
show a simple schematic of co-and 
countercurrent imbibition, respectively. 
Cocurrent and countercurrent flows have 
been studied by many researchers [8-11]. 
Morrow and Mason [12] performed a 
review on recovery of oil by spontaneous 
imbibition. Kashchiev and Firoozabadi [13] 
presented analytical solutions for the initial 
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stage of one-dimensional countercurrent 
flow of water and oil in porous media. 
Tavassoli et al. [14] studied countercurrent 
imbibition and used an approximate 
analytical approach to derive an expression 
for saturation profile. Silin and Patzek [15] 
extended a model of countercurrent 
imbibition based on Barenblatt’s theory of 
non-equilibrium two-phase flow. Fine grid, 
one- and two-dimensional simulations of 
countercurrent imbibition were performed 
by Behbahani et al. [16]. 
     To find the saturation distribution in 
matrix block in both co- and countercurrent 
flows, pertaining nonlinear PDEs should be 
solved. In solving these PDEs by numerical 
methods, stability and convergence should 
be taken into consideration. Otherwise, 
solutions might lead to inappropriate results. 
A semi exact method called Homotopy 
perturbation has been recently established 
and many authors have applied it to solve 
nonlinear equations [17-25]. 
     The purpose of this study is to solve 
nonlinear PDEs describing co- and 
countercurrent imbibition by He’s 
Homotopy perturbation method (HPM). The 
HPM was introduced by He [26-32]. In this 
method the solution is considered as the 
summation of an infinite series which 
usually converges rapidly to the exact 
solutions. Using homotopy technique in 
topology, a homotopy is constructed with an 
embedding parameter p [0,1] א, which is 
considered a “small parameter”[33]. In 
addition, the equations are also solved by a 
numerical method and the results are then 
compared with those obtained by HPM. 
Moreover, in this study the effect of 
gravitational acceleration in both co- and 
countercurrent imbibition equations is 
considered as well. 
 

2. Fundamentals of homotopy 
perturbation method (HPM) 
     To explain the basic idea of the HPM for 
solving nonlinear differential equations, we 
consider the following nonlinear differential 
equation: 
 

ሻݓሺܣ െ ݂ሺݎሻ ൌ 0,                                     (1) 

 
Subject to boundary condition 
 

ߚ ቀݓ, డ௪

డ௡
ቁ ൌ 0,                                          (2) 

 

     Where A is a general differential 
operator, ߚ a boundary operator, ݂ሺݎሻ is a 
known analytical function, ߁ is the 
boundary of domain, ߗ and ߲ݓ ോ ߲݊ 
denotes differentiation along the normal 
drawn outwards from  ߗ. The operator ܣ 
generally can be divided into two parts: a 
linear part M and a nonlinear part N. 
Equation 1 can therefore be rewritten as 
follows: 
 

ሻݓሺܯ ൅ ܰሺݓሻ െ ݂ሺݎሻ ൌ 0,                     (3) 
 

     In case the nonlinear Eq. 1 has no “small 
parameter”, the following homotopy can be 
constructed, 
 

0

( , )

(1 )[ ( ) ( )] ( ( ) ( ) ( )) 0,  (4)

H v P

P M v M w P M v N v f r


     

 

     Where  ܲ is called homotopy parameter 
and ݓ଴ is an initial approximation which 
satisfies the boundary conditions. According 
to the HPM, the approximate solution of Eq. 
4 can be expressed as a series of the power 
of  ܲ, i.e. 
 

ݒ ൌ ଵݒ଴ାܲݒ ൅ ܲଶݒଶ ൅  (5a)                      ,ڮ
ݓ ൌ lim௣՜ଵ ݒ ൌ ଴ݒ ൅ ଵݒ ൅  (5b)         ,ڮଶାݒ
 

     Where Eq. 4 corresponds to Eq. 1 and 
Eq. 5b becomes the approximate solution of 
Eq. 1.  
     Some interesting results have been 
attained using HPM [18, 19, 24, 34 and 35]. 
Ganji [25] compared Homotopy 
perturbation method (HPM) with numerical 
method in the heat transfer field. To do this, 
he considered two nonlinear PDEs related to 
two cases: (1) Cooling of a lumped system 
with variable specific heat, and (2) The 
temperature distribution equation in a thick 
rectangular fin radiation to free space. He 
showed that He’s Homotopy perturbation 
method (HPM) overcomes completely the 
inaccurate results obtained by numerical 
methods especially in cases where the 
equation is intensively dependent on time. 
Ganji and Rajabi [24] attempted to show the 
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capabilities and wide-range applications of 
the Homotopy perturbation method in 
comparison with the previous ones in 
solving heat transfer problems. In their 
research, Homotopy perturbation method 
was used to solve an unsteady nonlinear 
convective-radiative equation and a 
nonlinear convective-radiative conduction 
equation. They also showed that HPM has 
the smaller error compared to exact solution 
as the rate of nonlinearity is higher. 
Cveticanin [18] used the Homotopy 
perturbation method proposed by J.-H. He 
to solve pure strong nonlinear second-order 
differential equation. Two types of 
differential equations were considered: with 
strong cubic and strong quadratic 
nonlinearity. The obtained solution was 
compared with exact numerical one. The 
difference between these solutions was 
negligible for a long time period. The 
method was found to work extremely well 
in the examples. Siddiqui et al.[36] analyzed 
the thin film flow problem with a third 
grade fluid on an inclined plane. The 
governing non-linear equation was solved 
for the velocity field using the traditional 
perturbation technique as well as Homotopy 
perturbation method and the results were 
compared which were in complete 
agreement. Biazar and Ghazvini [37] 
presented the use of the He’s Homotopy 
perturbation method, for systems of linear 
and non-linear Volterra integral equations 
of the second kind. For linear and non-linear 
systems, very good approximations were 
derived to the solutions. They concluded 
that the He’s Homotopy perturbation 
method is a powerful and efficient 
technique in finding very good solutions for 
this kind of systems. Belendez et al. [21] 
used Homotopy perturbation method to 
solve the nonlinear differential equation that 
governs the nonlinear oscillations of a 
system typified as a mass attached to a 
stretched elastic wire. It was found that this 
perturbation method works very well for the 
whole range of parameters involved, and 
excellent agreement of the approximate 
frequencies and periodic solutions with the 

exact ones can be obtained. Cveticanin [38] 
used He’s homotopy perturbation method to 
solve non-linear partial differential 
equations. An approximate solution of the 
differential equation which describes the 
longitudinal vibration of a beam was 
obtained. The solution was compared with 
that found using the variational iteration 
method introduced by He. The difference 
between the two solutions is negligible. 
Ravi Kanth and Aruna [39] tried to find the 
numerical solution of linear and non-linear 
higher-order boundary value problems using 
He’s Homotopy perturbation method. This 
technique was tested on three examples, and 
was seen to produce satisfactory results. Cai 
and Wu [40] applied the Homotopy 
perturbation method to nonlinear 
oscillations. It was demonstrated that the 
solution procedure is of deceptively 
simplicity and the obtained insightful 
solutions are of high accuracy even with the 
first-order approximation. Fathizadeh and 
Rashidi [41] solved convective heat transfer 
equations of boundary layer with pressure 
gradient over a flat plate using Homotopy 
Perturbation Method (HPM). They showed 
that results agree well with those obtained 
numerically. Yildirim and Sezer [33] solved 
the steady two-dimensional laminar forced 
magnetohydrodynamic Hiemenz flow 
against a flat plate with variable wall 
temperature in a porous medium using the 
homotopy perturbation method (HPM). The 
skin friction coefficient and the rate of heat 
transfer given by the HPM were in good 
agreement with the numerical solutions of 
the Keller box method. 
     It should be pointed out that the 
following benefits has been suggested by 
different authors [25, 18, 21, 40 and 41 ]:  
 

1. The HPM is valid for all the nonlinear 
equations with high order of 
nonlinearity containing different 
parameters.  

2. The suggested method works well due 
to the fact that it uses the advantages 
of the homotopy, perturbation and 
power series expansion methods.  
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3. This technique yields a very rapid 
convergence of the solution series; in 
most cases only one iteration leads to 
high accuracy of the solution.  

4. Due to the simplicity and accuracy of 
the He’s homotopy perturbation 
method the application of this method 
is recommended when solving 
practical technical problems. Both the 
reliability of the method and the 
possibility of using computers, to 
obtain a more accurate solution, are 
the main reasons for wide applications 
of this method. 

     The reliability of the method and the 
reduction in the size of computational 
domain give this method a wider 
applicability. 
 

3. Governing equations 
     Two phase immiscible flow of water 
(wetting phase) and oil (nonwetting phase) 
in a porous medium is governed by 
equations of conservation of mass and 
Darcy’s law. In one dimensional (vertical) 
case and when flow is incompressible, mass 
conservation is expressed by: 
 

డሺ׎ఘೌௌೌሻ

డ௧
ൌ െ డሺఘೌ௨ೌሻ

డ௭
൅ ܽ   ,௔ݍ ൌ ,ݓ  (6)      ,݋

 

     Where φ is porosity (ratio of void space 
to grain volume) of porous medium, ρ is 
density of each fluid, S is saturation 
(fraction of pore space filled by a specific 
fluid) of each phase, u is Darcy velocity, q 
is water or oil mass flow rate which is zero 
in this study and z is depth. In addition, the 
index ߙ denotes water/oil phase. 
Also, Darcy’s law has the following 
relation: 
 

௔ݑ ൌ െ ௄௞ೝೌ

ఓೌ

డ

డ௭
ሺ݌௔ሻ,   ܽ ൌ ,ݓ  (7)               ,݋

     Where ߤ  ,݌, ݇௥ are pressure, viscosity 
and relative permeability of each phase 
respectively. K is the absolute permeability 
of porous medium and g is gravitational 
acceleration. 
     It is noteworthy that absolute 
permeability is a measure of the ability of a 
porous medium to allow petroleum fluids to 
flow through its interconnected pores. Also, 

relative permeability demonstrates ability of 
one phase to flow in the presence of other 
phase(s), since the presence of more than 
one fluid generally inhibits flow. 
     In a porous medium, the following 
relation exists between water and oil 
saturations: 
 

ܵ௪ ൅ ܵ௢ ൌ 1,                                             (8) 

    The difference between pressures of oil 
and water is defined as capillary pressure: 
 

௖ܲሺܵ௪ሻ ൌ ௢ܲ െ ௪ܲ,                                    (9) 

    Also, the sum of Darcy velocities of 
water and oil phases is the total velocity: 
 

ݑ ൌ ௪ݑ ൅  ௢,                                          (10)ݑ
 

     Applying Eqs.9 and 10 to Eqs. 6 and 7 
for water phase with some mathematical 
manipulation gives [42] 
     

 
      Where ߣ௢, ߣ௪ and ௪݂ are, oil and water 
mobility and water fractional flow function 
respectively, given by 
 

௢ߣ ൌ ௞ೝ೚

ఓ೚
,                                                  (12) 

 

௪ߣ ൌ ௞ೝೢ

ఓೢ
,                                                (13) 

 

௪݂ ൌ
ೖೝೢ
ഋೢ

ೖೝ೚
ഋ೚

ାೖೝೢ
ഋೢ

,                                          (14) 

 

     In Eq. 11, the value of  ݑ can be replaced 
by Eq. 15 in which total mobility and total 
pressure are used: 
 

ݑ ൌ െܭ ቀߣሺܵሻ డ௉

డ௭
െ ሺߣ௪ߩ௪ାߣ௢ߩ௢ሻ݃ቁ,   (15) 

      
Where 

ሺܵሻߣ డ௉

డ௭
ൌ ௪ߣ

డ௉ೢ

డ௭
൅ ௢ߣ

డ௉బ

డ௭
,                     (16) 

By applying Eqs.8 and 10 to Eq. 6 and 
under the assumption that the fluids are 
incompressible,  
 

డ௨

డ௭
ൌ 0,                                                    (17) 

(  )
{ ( ) ( )[ . ( ) ]

 ( ) } 0                                                          (11)

w c w
w w o w w o

w

w w

S dp dS
Kf S S g

t z dS dz

f S u


  

 
  

 

 
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Figure 1: Simple schematic of 1D cocurrent flow into a vertical porous medium  
with gravity included 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Simple schematic of 1D countercurrent flow into a vertical porous medium  
with gravity included 
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3.1 Cocurrent imbibition 
     By considering Eq. 17, Eq. 11 can be 
rewritten as 
 

( ) ( ) ( ( ) ( ))
[ ( ) ]

[ ( ) ( ) . ] 0                           (18)

w w w w w o w w
w o

w w

c w
w w o w

w

S f S f S S S
u K g

t S S z

dp dS
Kf S S

z dS dz

 
 



   
   

   





 

 

     The above equation can model cocurrent 
imbibition process. By using (15-17) and 
Eq. 18 saturation distribution of each phase 
can be derived as a function of time and 
vertical direction of matrix block. The 
following boundary and initial conditions 
are used for solving these equations: 
 

ܵ௪ ൌ ݁ି௭,   ݐ ൌ 0, 0 ൑ ݖ  ൑  (19)               ,ܮ
ܵ௪ ൌ ݐ   ,1 ൐ 0, ݖ ൌ 0,                           (20) 
ܵ௪ ൌ ݁ି௅,   ݐ ൐ ݖ   ,0 ൌ  (21)                      ,ܮ

௪ܲ ൌ ݐ   ,0 ൏ ݖ   ,0 ൌ 0,                          (22) 
௢ܲ ൌ ݐ   ,0 ൏ ݖ   ,0 ൌ  (23)                           ,ܮ

 

3.2 Countercurrent imbibition 
     In countercurrent imbibition process, 
total velocity is zero. So, Eq. 18 becomes 
 
 

( ) ( ( ) ( ))
[ ( ) ]

[ ( ) ( ) . ]                             (24)

w w w o w w
w o

w

c w
w w o w

w

S f S S S
K g

t S z

dp dS
Kf S S

z dS dz

 
 



  
  

  



       
Again, using (15-17) and Eq. 24, saturation 
profile can be found. In this case, initial and 
boundary conditions are  
 
ܵ௪ ൌ ݁ି௭,   ݐ ൌ 0,   0 ൑ ݖ ൑  (25)               ,ܮ
ܵ௪ ൌ ݐ   ,1 ൐ ݖ   ,0 ൌ 0,                          (26) 
ܵ௪ ൌ ݁ି௅,   ݐ ൐ ݖ   ,0 ൌ  (27)                      ,ܮ
 
Where ܮ is length of the matrix block. 
 

4. Results and discussions 
     In this section, we apply HPM for 
solving PDEs derived for cocurrent and 
countercurrent imbibition processes in order 
to find saturation distribution in these two 
cases. For ease of mathematical calculation, 
 
 

 we assume standard forms of Scheidegger 
and Johnson [43] for the analytical 
relationship between the relative 
permeability, phase saturation and capillary 
pressure as 
 

݇௥௪ ൌ ܵ௪,                                                (28) 
݇௥௢ ൌ 1 െ ܽܵ௪,                                       (29) 

௖ܲ ൌ െܵܤ௪,                                             (30) 
 

     Where ܽ and ܤ are empirical constants 
that can be evaluated from measured data. 
 

4.1 HMP solution of cocurrent imbibition 
equation 
     In this section, after some mathematical 
manipulations, we construct a homotopy of 
nonlinear partial differential system of 
Eq.17 and Eq. 18 as follows:
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 
   

   
  
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We consider the approximate solutions as 
follows: 
 

ܵ௪ ൌ ܵ௪଴ ൅ ܲܵ௪ଵ ൅ ܲଶܵ௪ଶ ൅  (32)           ,ڮ
௪݌ ൌ ௪଴݌ ൅ ௪ଵ݌ܲ ൅ ܲଶ݌௪ଶ ൅  (33)          ,ڮ

Assuming
 

2
0 0

2
0w wS p

t z

 
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 
 and 

substituting S୵ and  ݌௪ from Eq. 32 and  
Eq. 33 into Eq. 31 and some simplification 
and rearranging based on powers of ܲ-
terms, we have: 
 

ܲ଴: డௌೢబ

డ௧
ൌ 0, డమ௉ೢ బ

ப୸మ ൌ 0,                          (34)                      

 
ܵ௪଴ሺݖ, 0ሻ ൌ ݁ି௭, ,௪଴ሺ0݌  ሻݐ ൌ 0, ,௢଴ሺ0݌  ሻ        (35)ݐ
  



 
   Application of Homotopy Perturbation …..                                                                                                                          19 

 
 

1 2 1 0

2
2 0

0

2 2
20 0

0 02 2

2 2
3 0

0 2

0
0

( )
: ( )

( ) ( )
( )

( 2 )

( ) ( )
(

2 ( )
) +

w w o w w o w
w

w o w w o o w
w

w w o w w
w w

w o w o w w o
w

w o w w w
w

S K g g K S
P

t z

K g a K g a S
S

z

KB S KB a S
S S

z z

KB a a S gK a
S

z

K g a S a KB
S S

z

    


 
     

 
  

 
     
 

   
 

  
  

 

  
 



  
 

 

  
 


 


20

0

2 20 0 0
0

0 0
0

2 2
1 0 0 0

02 2

2 2
20 0 0

02 2

0

( )

( )
( ) . .

( )
. 0,

. .

( )

( )
. 0   

w
w

o w w w w w
w

o w w w
w

w o w w o w w w
w

w w

w w w
w

o w w o w

w

S

z

KBa a S K S p
S

z z z

K a S p
S

z z

p a p a S p
S

z z z z

S S S
B aBS B

z z z
g a S

z

  
 

 


   
 

   






   

 
  

  


 

     
  

   

  
  

  
 




                            (36)
 

 
 
 

1 1 1( ,0) 0, (0, ) 0, (0, ) 0,              (37)w w oS z p t p t    

 
 
 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

2 2 2
2 1 0

0 12 2 2

2
0 1 1 0 1

2

2 2
1 0 0 1

0 12 2

1

( )

( . . )

( ) 2 .

( )
. 0,                                      (38

w o w w w
w w

w

o w w w w w w

w

w w w w
w w

o w w o w

w

p a p p
S S

z z z

a S p S p S
B

z z z z z

S S S S
aB S S B

z z z z
g a S

z

 


 


   


   
  

  

     
 

    

   
   

   
 




)

 

 
ܵ௪ଶሺݖ, 0ሻ ൌ 0, ,௪ଶሺ0݌ ሻݐ ൌ 0, ,௢ଶሺ0݌ ሻݐ ൌ 0,                 (39) 
 

     Solving (34-38) and applying boundary 
conditions (35-39) with data in Table 1, we 
have: 
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     According to Eq. 32 and assumption that 
ܲ ൌ 1, we get the following approximation 
for saturation distribution: 
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4.2 HMP solution of countercurrent 
imbibition equation 
     We construct the homotopy of Eq. 24 
which satisfies 
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we suppose that the solution of Eq. 24 has 
the form: 
 

ܵ௪ ൌ ܵ௪଴ ൅ ܲܵ௪ଵ ൅ ܲଶܵ௪ଶ ൅  (45)           ,ڮ
 
 

     Then, substituting Eq. 45 into Eq. 44, 
and equating the terms with identical 
powers of ܲ, 
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Solving (46-50) and applying boundary 
conditions (47-51) with data in Table 1, we    
have: 
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     According to Eq. 32 and assumption that 
 ܲ =1, we get the following    approximation  
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for saturation distribution: 
 

6 6 2 6 3 7 4

7 2 7 3 7 4 8 5

9 6 2 12

( , ) [(1.157 10 ) ( 1.853 10 ) ( 1.321 10 ) ( 1.112 10 )

] [( 3.239 10 ) (4.960 10 ) (4.061 10 ) (5.701 10 )

(2.179 10 ) ] 0.5 [(1.338 10 ) ( 8

z z z z z
w

z z z z

z z

S z t e e e e e

t e e e e

e t t e

        

       

   

           

         

     12 2 13 3

11 4 11 5 12 6 13 7

.571 10 ) ( 8.581 10 )

(1.752 10 ) (1.534 10 ) (3.076 10 ) (1.792 10 ) ]     

                                                                                       

z z

z z z z

e e

e e e e

   

       

   

       
                                 (55)

 

Table 1: Data for numerical calculations 

K  10ିଵଷ݉ଶ w  1.2 mPas 

  0.23 o  1.5 mPas 

L  1.5 m w  1090 Kg/ 3m  

a  1.11 o  760 Kg/ 3m  
B  1000 Pa   

 
     Since Eqs. 17, 18, 24 cannot be easily 
solved by analytical methods, these 
equations are therefore, solved by a 
numerical method applying software 
MATLAB using function pdepe. Values of 
saturation of water obtained by numerical 
method and HPM, for a specific time and at 
different locations ( z ) in the matrix block, 
are given in Tables 2 and 3 for both co- and 
countercurrent imbibition processes, 
respectively. As can be seen, HPM has a 
high accuracy at ݐ ൌ2.5 minutes and ݐ ൌ16 
hours for both co- and counter current 
imbibition processes. 
     Additionally, the consequent results of 
the two different methods of homotopy 
perturbation and numerical, for co-and 
countercurrent imbibition processes, are 
compared in Figs. 3,4,5,6 at some other 
times of the processes. Figures 4, 6 which 
are related to the saturation distribution in 
the block at early time, indicate a good 
agreement between the methods.  
     As mentioned before, HPM gives an 
approximation to the solution of differential 
equations. Usually, including more terms in 
the power series of ܲ, gives higher  
accuracy in HPM. The reason underlying 
the less accurate solutions in the cases of 
t=24 hours (Fig.3) and t=5 minutes (Fig.5) 
compared to previous cases, is that the 
series are truncated after ܲଶ-term. This 
problem can be solved by considering more 
terms in series of the power of ܲ.  

 
 
 

Table 2: The results of HPM and NM methods for 
saturation in cocurrent imbibition at ࢚ ൌ2.5 

minutes 

( )z m  
wS  

HPM NM 

0.30 0.747999 0.743939 
0.35 0.711204 0.713777 
0.40 0.676232 0.680106 
0.45 0.642994 0.647461 
0.50 0.611401 0.616133 
0.55 0.581371 0.586543 
0.60 0.552826 0.553426 
0.65 0.525691 0.530115 
0.70 0.499896 0.504166 
0.75 0.475374 0.479559 
0.80 0.452062 0.452830 
0.85 0.429898 0.436189 
0.90 0.408827 0.412014 
0.95 0.388793 0.391535 
1.00 0.369746 0.370497 
1.05 0.351635 0.358740 
1.10 0.334415 0.336500 
1.15 0.318042 0.319623 
1.20 0.302473 0.303147 
1.25 0.287669 0.295000 
1.30 0.273592 0.274831 
1.35 0.260206 0.261020 
1.40 0.247477 0.248072 
1.45 0.235373 0.242612 
1.50 0.223862 0.223130 
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Table 3: The results of HPM and NM methods for saturation  

in countercurrent imbibition at ࢚ ൌ16 hours 

( )z m  
wS  

HPM NM 

0.30 0.716510 0.711008 
0.35 0.683785 0.679903 
0.40 0.652695 0.650005 
0.45 0.623099 0.621280 
0.50 0.594883 0.593693 
0.55 0.567951 0.567210 
0.60 0.542223 0.541797 
0.65 0.517629 0.517421 
0.70 0.494111 0.494048 
0.75 0.471614 0.471645 
0.80 0.450092 0.450179 
0.85 0.429501 0.429619 
0.90 0.409801 0.409932 
0.95 0.390956 0.391088 
1.00 0.372930 0.373056 
1.05 0.355691 0.355806 
1.10 0.339207 0.339308 
1.15 0.323448 0.323534 
1.20 0.308385 0.308456 
1.25 0.293990 0.294043 
1.30 0.280236 0.280255 
1.35 0.267098 0.267009 
1.40 0.254550 0.254035 
1.45 0.242568 0.240408 
1.50 0.231129 0.223130 

 

 
Figure 3: The comparison of the answers obtained by HPM and numerical 

methods for water saturation for counter current flow at t=24 hours 
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Figure 4: The comparison of the answers obtained by HPM and numerical  

methods for water saturation for counter current flow at t=8 hours 
 

 
Figure 5: The comparison of the answers obtained by HPM and numerical 

methods for water saturation for cocurrent flow at t=5 minutes 
 

 
Figure 6: The comparison of the answers obtained by HPM and numerical  

methods for water saturation for cocurrent flow at t=1 minute 
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5. Conclusion 
     In this study, homotopy perturbation 
method is used for solving the problem of 
co-and counter current imbibition of water 
into a single matrix block to find the water 
saturation in a matrix block when two phase 
flow of oil and water exists while all 
parameters including gravitational 
acceleration are considered in the governing 
equations. The homotopy perturbation 
method is effective in solving strong non-
linear partial differential equations. The 
strong non-linear partial differential 
equations are transformed into a system of 
ordinary differential equations which are 
suitable for calculation. The partial 
differential equations are solved by a 
numerical method applying MATLAB using 
function pdepe. The solutions which are  

 
obtained in this way are in good agreement 
with the solutions obtained by HPM.   
     The results show that HPM has high 
accuracy at early times of the co-and counter 
current imbibition processes. This accuracy 
can be high in middle and late time regions, 
as well, by including more terms in the 
series of the power of ܲ, in procedure of 
HPM. 
     He’s homotopy perturbation method can 
be a reliable tool for solving partial 
differential equations describing different 
engineering problems. Both the reliability of 
the method and the possibility of using 
computers, to obtain a more accurate 
solution, allows the method to be widely 
applied. 
 

 
 

Abbreviations 
 General differential operator ܣ

ܽ Empirical constant 

 Empirical constant ܤ

݂ሺݎሻ Known analytical function 

௪݂ Water fractional flow function 

g Gravitational acceleration 

 Absolute permeability ܭ

݇௥ఈ Relative permeability of each phase (ߙ ൌ oil,water)

L Length of matrix block  

M Linear part of operator ܣ 

N Nonlinear part of operator ܣ 

 ௖ Capillary pressure݌

P Homotopy parameter 

 ௪௝(j=1, 2, 3,…) Series terms of Eq.32݌

ߙ)   ஑  Pressure of each phase݌ ൌ oil, water) 

ܵ௪௝ Series terms of Eq.32  

ܵఈ Saturation of each phase (ߙ ൌ oil, water)

  Time ݐ

U Total velocity 
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 Solution of Eq. 4  ߥ

 Solution of Eq. 1 ݓ

 .଴ Initial approximation to w satisfying boundary  conditionsݓ

  Depth ݖ

  Differentiation along normal drawn Outwards from Ω  ߲݊/ݓ߲
 

 
Greek symbols  

 Boundary operator ߚ

Γ Boundary of domain Ω

Λ Total mobility

௢ Oil mobilityߣ

௪ Water mobilityߣ

ߙ) ఈ Viscosity of each phaseߤ ൌ oil, water)

ߙ) ఈ Density of each phaseߩ ൌ oil, water)

߮ porosity

Ω Domain
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