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Abstract 
     Time-delay identification is one of the most important parameters in designing controllers. In the 
cases where the number of inputs and outputs in a system are more than one, this identification is of 
great concern. In this paper, a novel autocorrelation-based scheme for the state variable time-delay 
identification for multi-input multi-output (MIMO) system has been presented. This method is based on 
the stochastic phenomena which are capable of identifying each state variable independent of other 
variables, a control strategy for controlling such systems; and furthermore confirming the stability 
criteria. The results demonstrate the effectiveness of the proposed control strategy which has the 
advantage of confirming the stability, simple implementation and analysis. 
 

Keywords: Time delay, Autocorrelation, State variable delay systems, PI controller, 
Closed- loop stability 

 

Introduction 
 In many engineering systems, time-delay 

in a proportional-integral controller system 
(i.e., PI) is an integral part of the governing 
equations. Owing to its intricacy, time-delay 
identification with either a constant or a 
variable parameter still poses more 
exploitation. Actuators, sensors, field 
networks and wireless communications that 
are involved in feedback loops usually 
introducing such delays. In chemical 
engineering, the measurement of 
concentration with a gas chromatograph is a 
typical example where it has a time delay of 
about 20 minutes. However, in many cases 
the exact time-delay is either not available or 
varies with time. The latter, is observed in 
fouling process in heat exchangers. Hence, 
the knowledge of time-delay is crucial in 
designing controller; in particular, model 
based controllers. 

 Regarding to the delay knowledge, 
observers as well as predictors probably 
constitute the most demanding case of 
applications. In general, time-delay could be 
categorized as: delay transfer in input, delay 
transfer in output or state variable time-
delay. Therefore, researchers have presented 
different schemes for time-delay 

identification. In their work, time-delay is 
also referred to as dead time for a system that 
has time-delay as a hereditary system [1]. 
     In spite of all this progress, a complete or 
at least satisfactory MIMO generalization of 
the Lyapunov-based direct adaptive control 
has not yet been achieved even for the 
relative degree one case. Indeed, the existing 
direct MIMO MRAC (Model Reference 
Adaptive Control) schemes require much 
more stringent assumptions on the plant than 
in the SISO ones. The main stumbling block 
is the high-frequency gain (HFG) matrix Kp. 
For a MRAC design using the direct 
adaptation approach, restrictive assumptions 
on the prior knowledge of Kp have been 
made. On the other hand, using the indirect 
adaptation approach requires the estimate of 
Kp to be nonsingular at all times. Recently, a 
similar LU factorization was shown to be a 
key procedure in circumventing the usual 
restrictive prior assumptions required in 
direct MRAC design of a 2×2 visual 
servoing system [2 and 3]. The same visual 
servoing problem was solved using a 
factorization of the form Kp = SU, where S 
and U are symmetric positive definite and U 
unity upper triangular, respectively [4]. 
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 The framework of the standard MRAC 
control structure is widely used in the control 
literature for plants without delay; however, 
two new output feedback adaptive control 
schemes based on Model Reference 
Adaptive Control (MRAC) and adaptive 
laws for updating the controller parameters 
are developed by Boris and Gutman in 2005 
for a class of linear multi-input–multi-output 
(MIMO) systems with state delay as shown 
in Figure 1 [5]. In this scheme, they utilized 
controller rules which have been obtained 
from matrices of high frequency gain.  

 

 
Figure 1: Adaptive control structure with the 

auxiliary dynamic feedforward P(s, ). 
 

 In concrete applications, the delay 
invariance and delay knowledge remain 
assumptions coming more from the 
identification and analysis limits than from 
technical facts. So, the robustness with 
regard to the delay estimation (and variation) 
should receive additional interest. Many 
physical and chemical systems own multiple 
input-output, such as distillation column. 
Controlling such a system constitutes the 
most demanding case of application. Liu Hsu 
and co-workers in 2000 implemented a 
control reference model in controlling such a 
system and presented controller rules in 
frequency space [6]. Another method for 
controlling such systems, is utilizing control 
loops in parallel. In this technique, each 
output system is controlled with a controller. 
The advantage of this algorithm is the simple 
implementation of the control loop and its 
practical application.              

 

Time-delay identification scheme 
adopted in this work  

The system that has been utilized in this 
work has the following form: 

(1)          
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     where AandA,B
i

are the matrices of 
equation coefficients which are assumed 
constant, x state variable, u control variable, 
n the state number, m the number of system 
inputs and id  the amount of delay in each 
state variable. Analysis of heat exchanger 
and population ecology are typical examples 
of such a system [7]. Many researchers have 
investigated the stability of the above named 
systems and different algorithms have been 
presented to control such a system [8]. For 
example, a robust control of delay systems 
has been presented using sliding mode 
control [9]. Furthermore, a model predictive 
control algorithm has been utilized for the 
above mentioned system [10].  

  Prediction of time-delay for the 
calculation of stability and system control 
are essential. Furthermore, knowledge of 
time-delay would cause a cut in computation 
and make the control algorithm simpler. 
Diop and co-worker in 2001 utilized the least 
square method for the identification of time-
delay in state variable [11]. They assumed 
that input to the system at time d was 
available. 
     Drakunov and co-workers in 2006 
presented a new scheme [12]. In this 
algorithm, they utilized adoptive method for 
identification of time-delay. 

 Therefore, for this algorithm it is 
necessary to have the values of coefficients 
for the system. Moreover, according to the 
Lypunov stability criteria, convergence 
satisfies when the condition of differential 
equation for time-delay approaches the 
actual value. Furthermore, other convergence 
criteria such as rich input, rich output and the 
ability of state variable to be differentiable 
twice, must be satisfied. However, in this 
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method there is no guarantee for time-delay 
identification in cases where variables are 
time dependent. Moreover, no discussion has 
been made on parameters such as noise and 
resistivity of the algorithm. 

  In this work, a new method has been 
presented for the time-delay identification in 
state variable for the discretized form of 
equation1. In this scheme, each state variable 
could both have independent time-delay and 
variable time dependent. The advantage of 
this method is its resistivity to noise which is 
discussed hereafter. 

 

Time-delay identification by 
autocorrelation method 

 A case was considered based on the 
Drakunov assumptions as demonstrated in 
Figure 1 [12]. 

If we could save the x values as a vector, 
calculation of x (k-d) from the coefficients 
and the equation is straightforward:  

(2)   
 
   
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Autocorrelation 
  In the analysis of stochastic phenomena, 

the correlation method is widely 
implemented. The correlation function for 
two discretized variable are described as 
follows: 

(3)           * .
k
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      If the function is continuous, integration 
instead of addition must be utilized in the 
above equation. Analysis reveals that if  
and w is two stochastic signals, the above 
equation is energy signal. Equation 9 could 
be rewritten as a power signal as follows: 

(4) 
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     In this case, m is the available delay in 
the  variable and the autocorrelation (or 
energy signal) is at highest [13]. Therefore, 
if in the above correlation we utilize the state 

variable vector according to the samples 
taken in advance, in fact, autocorrelation has 
been computed and from that time-delay 
could be easily evaluated. It must be kept in 
mind that each state variable ought to be 
analyzed separately (i.e., delay in each state 
variable is computed independently from 
other variables). 
 

Control of MIMO systems and the 
criteria of stability 

   To analyze the stability, the control for 
the system was constructed on Figure 2. In 
this method, PI controller-loops for 
controlling each output have been adopted. If 
we consider the equation for PI controller as 
a one, hence the following relationship 
would be derived: 

(5) 
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    The equations for the control error would 
be as follows: 
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 By substituting equation 11 into 12 we 
would have: 
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     where the above parameters are defined 
as follows: 
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 After some simplification, controller 
equation will be reduced to: 
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     If we combine the system equation with 
the controller equation, a new system of 
equation would be obtained: 
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     In which the above parameters are 
defined as follows: 
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There are two methods to consider the 
stability criterion for stability of the closed 
loop for the above combined system. One is 
the Lypunov functions and the other is the Δi 
matrices. Since the systems discussed were 
linear; the latter method was adopted in this 
work.   
 
 Numerical results 

   To assess the performance of time-delay 
identification of state variable strategies and 
control, two systems with two inputs and 
outputs were considered. Controller 
parameters for both systems were assumed 
identical, as are shown in Table 1. 

Consider the matrices of data and its 
parameters for the two case studies 

considered in this study as depicted in 
equations 11a and 11b. The simulation 
results of this study, includes the set point 
tracking for the first and second exit, exit 
controller and time-delay identification for 
the first and second state variables for both 
case studies which are shown in Figures 3-
12.  
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 Conclusion 

   In this paper, a new method for the time-
delay identification of systems where there is 
a delay in the state variable has been 
proposed. This scheme is based on the 
stochastic phenomena and is capable of 
identifying each state variable independent 
of other variables. This method has fewer 
limitations in contrast with other methods 
and does not even needs an initial 
assumption. Furthermore, in this work a 
control strategy for controlling such systems 
with multi input-output has also been 
presented. Simple implementation, easy 
analysis and the guaranteed stability are the 
main advantages of this control strategy.      
 

 
Figure 2: System flow diagram and PI design 

controller. 
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Figure 3: Set point tracking - first exit  

(case study 1). 
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Figure 4: Set point tracking – second exit  

(case study 1). 
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Figure 5: Exit controller (case study 1). 
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Figure 6: Time-delay identification for the first 

state variable (case study 1). 
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Figure 7: Time-delay identification for the second 

state variable (case study 1). 
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Figure 8: Set point tracking – first exit (case study 2). 
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Figure 9: Set point tracking – second exit  
(case study 2). 
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Figure 10: Exit controller (case study 2).  
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Figure 11: Time-delay identification for the first 

state variable (case study 2). 
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Figure 12: Time-delay identification for the second 

state variable (case study 2). 
 

 

 
Table 1: PI controller parameters. 

I cK  

1 0.4 

1 0.2 

 

 
 
 

Notation  
Control error e 
Parameter in equation 8 Kc 
Identification gain p 
Special adaptively adjusted 
dynamic system 

P(s, ) 

Reference signal r(t) 
Symmetric positive definite S 
Control variable u 
Unity upper triangular U 
Stochastic signal w 
Integral constant  I  
Stochastic signal   
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