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Abstract 

Laguerre function has many advantages such as good approximation capability for different systems, 
low computational complexity and the facility of on-line parameter identification. Therefore, it is widely 
adopted for complex industrial process control. In this work, Laguerre function based adaptive model 
predictive control algorithm (AMPC) was implemented to control continuous stirred tank reactor 
(CSTR) process temperature runaways. Simulation result reveals that AMPC has a good performance in 
set-point tracking and load rejection. For comparison, a nonlinear model predictive control based on 
Laguerre- wiener model was also applied to the process. Simulation result demonstrates that the two 
controllers have the same performance in set point tracking and load rejection problem. 
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Introduction 
Model Predictive Control (MPC) refers to 

a class of control algorithm in which a 
dynamic process model was used to predict 
and optimize process performance. The first 
MPC techniques were developed in the 
1970s because conventional single-loop 
controllers were unable to satisfy 
increasingly stringent performance 
requirements [1]. Linear models were 
successfully employed to solve control 
problems. However, many processes were 
sufficiently nonlinear. This led to the 
development of Adaptive Model Predictive 
Control (AMPC) and Nonlinear Model 
Predictive Control (NMPC) which were 
more accurate for process prediction and 
optimization. Models are a decisive factor in 
MPC algorithm.  

Zervos and Dumont in 1988 proposed a 
novel linear MPC algorithm based on 
Laguerre series in which the control horizon 
equals one [2]. From 2000 to 2004, Zhang 
presented a lot of successful industrial 
application of Laguerre functional series 
based control algorithm on high temperature 
semiconductor diffusion furnace, double 
water tank and distillation columns [3-5]. 
However, for high nonlinear process, it is 

better to use adaptive Laguerre model to 
approximate the behavior of the system.  

The behavior of many systems could be 
approximated by a static nonlinearity 
cascaded with a linear part in particular 
form. These models are known as 
Hammerstein and wiener block cascade 
models. These model structures have been 
successfully utilized to represent nonlinear 
system in a number of practical applications 
in the area of chemical and biological 
process, signal processing and control [6]. 
From an identification point of view, pH 
process has often been considered in the 
literature as having a wiener structure. 
Distillation process have been modeled using 
both Hammerstein and wiener models [7]. 

Nonlinear model predictive control 
(NMPC) has been proposed as an alternative 
to LMPC for plants with highly nonlinear 
behavior. NMPC offers the same capabilities 
for interaction compensation and constraint 
handling as its linear counterpart. The key 
difference is that NMPC utilizes a nonlinear 
model to predict and optimize process 
performance. The use of NMPC for plant-
wide control is problematic due to 
complications associated with dynamic 
modeling, state estimation and on-line 
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optimization. A nonlinear dynamic model of 
the entire plant is required for controller 
design. Such large-scale nonlinear models 
are extremely difficult to obtain using 
fundamental modeling and available 
techniques for empirical nonlinear modeling. 
Another complication is that unmeasured 
state variables must be estimated from 
available on-line measurements. This 
requires the design of a nonlinear observer, 
which is a difficult task despite recent 
advances. Even if a suitable nonlinear model 
is available, a nonlinear programming 
problem must be solved at each sampling 
period to generate the control moves. For 
large-scale systems, the optimization 
problem may be computationally intractable 
due to the large number of decision variables 
and the complexity of the constraints 
resulting from the nonlinear model 
equations. While it can be argued that 
cheaper and faster computers soon will be 
available to solve plant-wide nonlinear 
optimization problems in real-time, a simple 
calculation has shown that a NMPC problem 
with 20 inputs and 20 outputs will not be 
able to be solved on-line until well into this 
century given expected advances in 
computer technology. As a result, the 
judicious use of modeling assumptions and 
simplified controller formulations are 
required even for problems of moderate size 
and complexity [8]. 

In this paper, we have considered a 
temperature control problem of CSTR with 
first order exothermic reaction. Two 
controllers are designed for this purpose. The 
controllers are constructed through a 
Laguerre function based adaptive linear 
model predictive control and a Laguerre-
wiener model based nonlinear model 
predictive control.  

 

 Laguerre function  
The Laguerre functions are an 

orthonormal set of functions that are 
complete in the function space.  The Laplace 
transform of any of these functions is a 
rational function of the Laplace variable that 
has all of its poles at the point on the 

negative real axis.  In the time domain, the 
Laguerre functions are polynomials 
multiplied by a decaying exponential.  As 
such, the Laguerre functions can be used to 
approximate stable transfer functions, and/or 
reasonably behaved functions that decay to 
zero in the time domain.  Laguerre function, 

(t),is defined as a functional series [9]: 
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where p is a constant called time scaling 
factor and  0,t   is a time variable. 

The Laplace transformation of Laguerre 
function is defined as:  

(2)  
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Open loop stable system can be 
approximated by N order Laguerre series as 
shown in Figure (1): 
 

Figure 1: Laguerre series model structure 
 
Open loop stable system can be 

approximated by N order Laguerre series. 
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The state space expression of incremental 
mode Laguerre functional model after 
discretization is:  
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where  are the state vector of 
the incremental mode Laguerre functional 
model and the input and output of this model 
in kth sampling period, respectively; and 
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 1,...,
T

NC c c  is the Laguerre coefficients 
vector. Matrices, A and b, are calculated as 
follows:  
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and T is the sampling period. 
In the above equation u were calculated 

as a replacement for u in the controller. 
Owing to the fact that this method could 
import integral mechanism, which in terms 
could guarantee zero steady-state error in the 
closed-loop system [10]. 
 
 Laguerre-Wiener model 
     The Laguerre-wiener model of a 
nonlinear system is constructed by a 
nonlinear gain cascaded after Laguerre 
functional model as linear part. The block 
cascade structure of Laguerre-wiener model 
is demonstrated in Figure 2:  

 
Figure 2: Laguerre-wiener model 

 
The input-output relationship using this 

model could be presented as follows: 
     
    

L k 1 AL k bu k

y k L k

  

 
 

(6a) 
(6b) 

In this model, linear and nonlinear parts in 
Laguerre function could be represented by 
various models such as polynomial, 
NARMA and neural network.  
 

I. Laguerre-Wiener model using second 
order polynomial 
The nonlinear gain of many processes 

can be approximated by second order 
polynomial. Khaksar and co-workers used 
second order polynomial for Hammerstein 
model in controlling the unstable reactor by 
MPC algorithm [11].After using this 
polynomial for Laguerre- wiener model, the 
relationship between input-output can be 
shown as following equations: 
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(7b) 

where  1 NC c ,...,c  are coefficients of 
Laguerre functional model and  0 1 2, ,      
are coefficients of second order polynomial. 
Offline least square optimization technique 
was utilized for parameter identification in 
this model. 
 

 Model predictive controller (MPC) MPC is an optimization-based control 
strategy which is well suited for constrained, 
multivariable process. A sequence of control 
move was computed to minimize an 
objective function which includes predicted 
future values of the controlled output. The 
predictions are obtained from a process 
model. The various MPC algorithms 
proposed different cost function for 
obtaining the control law. A general 
expression for such an objective function is 
shown as:   
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     u k j | k u k j | k u k j 1 | k         
 
where Nu is the control horizon, H is the 
prediction horizon, Q is a symmetric positive 
semi definite penalty matrix on the output, R 
is symmetric definite penalty matrix on the 
rate of input and y (k+j|k) is the prediction 
output. An important characteristic of 
process control problem is the presence of 
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constrains on input state and output variable. 
In this work, input constrain was only 
considered which can be represented as: 
 

 L UU u k j | k U 0 j Nu 1       (9) 
 

The superscript L and U represents the 
admissible lower and upper bounds for the 
input variable, respectively. To compensate 
for the mismatch between the process and 
the model and to consider unmeasured 
disturbance in the process, a term such as 
one shown below must be added to predicted 
output of the plant: 

 

     md k y k y k   (10) 
 

   where y (k) is the output of the real process 
and ym (k) is the model output. The modified 
predicted output can be represented as:  
 

     pred my k i y k i d k i 1,..., H      (11) 
 

To employ the MPC strategy, it was 
necessary to obtain vector of future output 
from the model. For Laguerre functional 
model, the prediction output could be 
obtained using the following equations 
which yield from Equation 4  
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Coefficients of Laguerre model were 
identified on-line by RLS (Recursive Least 
Square) algorithm with forgetting factor 
[12]. For Laguerre-wiener model, the signal 
L (k) was defined as follows: 

 

      T
L k L k 1 ,..., L k H (20)      

 

Therefore, Laguerre-wiener model based 
output prediction can be computed as: 
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(21) 

 

Finally, adaptive Laguerre based model 
predictive control and Laguerre –wiener 
models were transferred to sequential 
quadratic programming problem. 
 
 Simulation results 

Reactors are the heart of many chemical 
processes thus dynamic simulation of these 
significant units is essential for the safe and 
profitable operation of the entire plant [13]. 
In reactors with exothermic reactions which 
are irreversible, the most challenging 
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problem is the potential for temperature 
runaways. The case study which was 
considered in this paper is highly nonlinear 
CSTR reactors which is the most common 
type of reactor used in industry. 
Consider a reactor in which the following 
exothermic reaction takes place: 
 

A B (22)  
 

The reaction rate can be given by: 
A Ar kc   (23) 

where k is the reaction constant dependant 
on temperature and is defined as: 
 

ok k exp( E / RT)   (24) 
 

Using the mass and energy balance 
equations, the reactor can be modeled as 
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     where cA is concentration of A and T is 
reactor temperature. Tcf is the coolant 
temperature which was considered as a 
manipulated variable and V is the reactor 
volume considered constant. The main 
objective of this work was to control the 
reactor temperature. The reactor 
characteristics adopted in this study are 
given in Table1 [14]. 

Figure 3 demonstrates the open-loop 
response of the process for  
±20 % step change in the coolant 
temperature. 

To categorize the process, a uniform 
random signal was generated in MATLAB 
as an excitation signal. The switching time 
between different levels were selected for 16 
samples. This signal was applied as the input 
signal to the process. Input and output data 
are gathered with sampling time of 0.06 min 
and with 2000 samples for identification 
purpose. Figure 4 shows the input and output 
which were collected for the identification of 
the process. 
Subsequent to identifying the process, initial 
parameters for Laguerre functional model 

and parameters for Laguerre-wiener model 
were obtained. These parameters are shown 
in Table 2: 

 
 
 

Table1: Nominal  CSTR operating condition and 
parameters 
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Table2:  Model's parameter 
Model Parameter 

Laguerre 
Functional 
Model 

1 2 3

4

1

2 3 4

1.0444, 0.1125, 0.2575,
0.3192
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Figure3: Open-loop step-response of the CSTR 
reactor for change in the coolant temperature 
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Figure4: Signals for identification of CSTR reactor  
a) input and  b)output 

 
By applying the Equation 20, the 

forgetting factor which has been utilized in 
RLS algorithm was updated. 
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where e is error between process output and 
model output. 

Figures 5 and 6 illustrate the performance 
of temperature tracking for the proposed 
controllers as well as the control action. The 
transient response of the system for load 
rejection was also studied in this work. The 
temperature transient response for the 
controllers and their corresponding control 
actions are shown in Figure 7 and 8. The 
performance of the proposed controller and 
control action in presence of model 
mismatch are shown in Figures 9 and 10, 

respectively. The control horizon and 
prediction horizons were tuned by trial and 
error 5 and 10, respectively. The weighting 
matrices were selected as Q = 100 I and R = 
0.3 I. To imposing saturation constraints in 
manipulated variable, a lower limit of 297 K 
and an upper limit of 372K were chosen. 
These figures demonstrate that AMPC based 
on Laguerre function has a good 
performance in set-point tracking and load 
rejection. In this work, the robustness of 
AMPC model mismatch was also examined 
and the deviation in the heat of reaction was 
considered as the model uncertainty. 
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Figure 5: Set-point tracking 
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Figure 6:  control action for set-point tracking 
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Figure7:Load rejection 
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Figure 8: Control action for load rejection 
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Figure 9: Performance of AMPC for deviation in 

the heat of reaction 
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Figure10: Control action in presence of model 

mismatch 
   
 Conclusion 
     There are many situations in which it is 
necessary to approximate the transfer 
function model of a physical system from 
input/output data.  This problem arises in 
adaptive control, deconvolution, fault 
detection and many other areas.  In this 
paper, an adaptive model predictive control 
using Laguerre functional model was 
presented. This controller was applied and 
simulated for the control of CSTR reactor 
process. The simulation result reveals that 
AMPC has a good performance in set-point 
tracking and load rejection. For comparison 
purposes, a nonlinear model predictive 
control based on Laguerre- wiener model 
was also applied to the process. Simulation 
results demonstrate that two purposed 
controller almost have the same 
performance. 
 
Notation 

pc

 

Heat capacity of the reactor content, 

cal kg-1 K-1 
pcc

 
Heat capacity of cooling water, cal kg-1 
K-1 

AC  Concentration of component A, mol/l3 

AfC  Inlet concentration of the reactant, 
mol/l3 

E  Activation energy of reaction, cal l-1 
q  Inlet volumetric flow rate, l3/min 
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H  Heat of reaction, cal/mol 

0k  Reaction rate constant 
R  Universal gas constant, cal/mol K 
T  Reactor temperature, K 

cfT  Inlet coolant temperature, K 

fT  Reactor inlet temperature, K 

h  Overall heart transfer coefficient, 
cal/min l2 K 

A  Area of heat transfer, l2 

V  Reactor volume, l3 

 

Greek letter 
  Density of the reactor content, g/l3 

cp
 

Density of jacket fluid, g/l3 
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