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Abstract 
Proper estimation of droplet growth rate plays a crucial role on appropriate prediction of supersonic 

separators performance for separation of fine droplets from a gas stream. Up to now, all available 
researches employ empirical or semi-empirical correlations to define the relationship between droplet 
growth rate (dr/dt) and other operating variables such as temperatures (T and TL), Pressure (P) and 
condensation rate (mL). These empirical or semi-empirical equations are developed for pure component 
systems and should not be extended to binary or multi-components systems. A novel theoretical 
approach is presented in this article which provides a fundamental equation to find the droplet growth 
rate by resorting to mass transfer equations. The new model uses a combination of mass transfer 
equations and mass and energy balances to estimate the droplet growth rate, droplet temperature and 
condensation rate simultaneously. Although the simulation results indicate that the proposed method 
provides impressive results when validated with several real experimental data, however, the main 
advantage of the present approach is that it can be easily extended to binary or multi-components 
systems. To the best of our knowledge, the proposed approach has not been addressed previously. 
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Introduction 
     Condensation phenomenon in supersonic 
Laval nozzles is of great importance in 
many fields such as formation of aerosols, 
wet steam flows in steam turbines, the flight 
of aircraft in humid conditions, droplet-
spray combustion processes or in phase 
separation devices (e.g. supersonic 
separators) [1]. 
     Expansion of a dry gas (such as steam) 
from superheated to wet condition is 
composed of several steps. The dry 
superheated gas initially enters the nozzle 
(point 1 in Figure 1) and then it expands to 
the sonic (throat) condition (point 2) during 
its travel through the nozzle. Evidently, gas 
pressure and its temperature are drastically 
reduced due to increase in the gas velocity. 
Assuming sufficient degree of superheat, 
the droplet embryos begin to form and grow 
after the throat (point 3). The pressure drop 
continues more intensely due to nucleation 
rate associated with these early embryos and 
the corresponding droplet growth of 
previously formed droplets. This area is 
known as nucleating zone and is terminated 
by the Wilson point (point 4). Downstream 

of Wilson point, nucleation ceases 
effectively and the number of droplets in the 
flow remains constant. In this region, the 
droplets grow rapidly and restore the system 
to the thermodynamic equilibrium. A 
sudden jump in pressure occurs due to the 
release of latent heat at supersonic 
conditions which tends to retard the 
supersonic flow. Further expansion of the 
flow takes place close to equilibrium 
conditions after point 5.  
     Gyarmathy [2] presented an early model 
to predict the growth rate over a wide range 
of pressure and flow regimes from free 
molecule to continuum. A few years later, 
Young [1] modified this model by 
introducing droplet growth parameters α, 
which presented a relationship between 
evaporation and condensation coefficients. 
The corrected model provided better 
agreement with experiment data in low 
pressure range and under non-equilibrium 
condition. He postulated that under non-
equilibrium condition, the evaporation 
coefficient falls below the condensation 
coefficient during condensation process. 
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Figure 1: Axial pressure distribution in nozzle 

with spontaneous condensation 
 
     Bakhtar and Zidi at 1985 [2] presented a 
semi-empirical relation for droplet's growth. 
Gyarmathy [1] presented a fairly realistic 
approximation for prediction of submicron 
droplets temperature by considering the 
capillarity effect and assuming uniform 
temperature inside the droplets. 
     Koo et al [3] presented a one-dimensional 
model based on classical nucleation and 
growth as a diagnostic tool for predicting the 
impact of different process conditions and 
nozzle geometries on particle size 
distributions produced from supersonic 
quenching of magnesium vapors. 
     Among many others, Guha and Young 
[4],  Cinar et al [5], White and Hounslow 
[6], Dykas [7], Gerber and Kermani [8] , 
Mahpeykar and Teymourtash [2], Yang and 
Shen [1] and  Dykas and Wroblewski [9] 
used essentially a similar procedure for 
estimation of various operating conditions 
and the corresponding mean droplets radius 
during the flow of supersonic gas inside 
Laval nozzle. In all of these researches, the 
effect of mass transfer on convective heat 
transfer coefficient is neglected and 
empirical or semi-empirical correlations are 
used to determine the relationship between 
droplet temperature and the fluid 
temperature in each segment.  

In the present article, a novel theoretical 
approach will be presented which computes 
the rate of droplet changes during the 
growth process by resorting to classical 
mass transfer. The effect of mass transfer on 
convective heat transfer coefficient will be 
also considered. 
 
2. A review of traditional 
mathematical modeling 
     Proper estimation of the paths typically 
shown in Figure 1 has crucial effect on the 
appropriate prediction of supersonic 
separators performance. Traditional process 
modeling approach for predicting all 
profiles of various operating conditions (TL, 
T, P, UG, Ma, J and ρG) and the mean 
droplets radius (r) during the flow of 
supersonic gas inside Laval nozzle is 
comprised of the following three sections:  
 
 Employment of 5 fundamental equations 

including mass, momentum and energy 
balances for the segment under 
consideration accompanied with Mach 
number definition and appropriate 
equation of state for the fluid. 

 Estimation of number of droplets formed 
per unit volume per time (J) by resorting 
to classical nucleation theory (6th 
equation).  

 Recruitment of continuity equation and a 
proper empirical correlation to evaluate 
the changes of droplets radius and the 
droplet temperature with time (7th and 8th 
equation). 

 
     Our newly proposed approach uses some 
steps of the above algorithm while replaces 
the empirical correlations with an analytical 
formula derived for prediction of mass 
transfer rate and its role on the growth rate 
of condensed droplets. Moreover, a 
corrected heat transfer coefficient is used to 
determine the effect of mass transfer on heat 
transfer rate. Evidently, this correction kicks 
in when the mass transfer is relatively large.   
     Assuming one dimensional flow over an 
incremental distance dx  and no inter-phase 
slip, the fundamental equations for steady 
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state two phase-flow for the segment shown 
in Figure 2 can be written as [2,5]:  
 

 
Figure 2: Flow element 

 

 
2.1. Continuity: Assuming that the area 
occupied by the liquid droplets is negligible, 
then continuity equation can be written as:  

GGLt AUmm                                       (1) 

 
     where tm  and Lm are the total and liquid 

mass flow rates respectively, G is gas 

density, A is total cross-sectional area of 
nozzle and GU  is gas velocity. Differentiating 

equation (1) leads to: 
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2.2. Momentum equation: Momentum 
changes across element dx can be expressed 
as: 
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     Where f is friction factor and de is the 
hydraulic diameter. Assuming no slip 
occurrence between the phases  LG UU 

 and dividing equation by PA , momentum 
equation can be rearranged as: 
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2.3. Equation of state: Using Virial EOS 
as: 
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     where z is compressibility factor, R̂ is 
the universal gas constant on a mass basis 

and 321 B,B,B are viral coefficients which 

are depended on temperature. After 
differentiation, equation (5) becomes:   
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2.4. Energy equation: The energy equation 
for steady state adiabatic flow shown in 
Figure 2 can be written as: 
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     Where Gh  and Lh are the gas and liquid 

phase enthalpies, respectively. The change 
of enthalpy of the vapor phase can be 
expressed by: 
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     Dividing equation (7) by Gpt Tcm , 

replacing latent heat  LG hh   with fgh  , 

using equation of state for 
PG

G

T

V









  and 

equation (1) for  Gm  leads to: 
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     The above equation usually provides the 
gas temperature at each segment. 
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2.5. Mach number: The speed of sound in 
a single phase gas can be expressed as: 

G
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(10) 

     where   is the ratio of specific heats. 
Introducing Z as the square of Mach 
number value is done as:  
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     Differentiating above equation and 
rearranging it leads to: 
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2.6. Nucleation rate: Assuming that the 
initial liquid droplets form only at a critical 
radius  r , then the nucleation rate (J) can 
be computed by resorting the definition of 
Dirac-delta function: 

*)r(Jdr)rr()r(J)r(J *                
(13) 

     The critical radius  r  is given via 
Kelvin-Helmholtz equation: 
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     Where 
 
is the surface tension and S 

parameter is the super-saturation ratio.  The 
rate of nucleation is calculated from 
classical nucleation theory and modified to 
include non-isothermal effects as: [1] 
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     Where qc is the condensation coefficient 
and has a value between 0.02 and 1.5, m is 
the mass of a single molecule and k is the 
Boltzmann constant (1.3807×10-23 J/K). The 
non-isothermal correction factor   is 
defined as: 
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2.7. Droplet growth rate and its 
temperature: Empirical or semi-empirical 
correlations coupled with energy balance 
(around a single droplet in the absence of 
mass transfer) are traditionally used to 

calculate droplet growth and its temperature 
inside a Laval nozzle:     
     Using Young model, the droplet growth 
rate may be derived on the basis of heat 
transfer conditions surrounding the droplet 
as: [1] 
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     Where L  and TL are the liquid density 
and droplet temperature, respectively.    
Gyarmathy's provided the following 
expression for the heat transfer between a 
stationary droplet and its surrounding for 
the entire range of Knudsen numbers as: [2]   
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     Where    is the steam thermal 

conductivity and l̂ is the molecular mean 
free path of steam.

        
 

Bakhtar and Zidi [2] proposed this semi-
empirical relation for prediction of droplet 
growth rate: 
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     Where nK is the Knudsen number, Sc is 

the Schmidt number and   L
sat

Ls TPT ,  is 

saturation density.   
     Gyarmathy [1] also proposed the 
following correlation to approximately 
predict the droplet temperature at each 
segment.   
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     Where Rd is mean droplets radius. 
     Proper combinations of two equations 
from the above correlations (17-20) can be 
used to predict the droplet growth rate and 
its temperature. Some models based on 
these combinations are shown in Table (1). 
Equations 2, 4, 6, 9, 12, 15 and various 
combinations of Table (1) are solved 
together to calculate the values of unknown 
parameters TL, T, P, UG, Ma, J and ρG and 
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the corresponding mean droplets radius (Rd) 
at each segment. Fourth order Runge-Kutta 
method is used in this work in an iterative 
manner to predict all required profiles. The 
simulation results for a real case study are 
presented in the next section.   
 

Table 1: Various combinations for estimation of 
droplet growth rate and its temperature 

                equations 
models 

17 18 19 20 

1     

2     

3     

4     

5     

 

 
3. Real case studies 
     The experimental data of Moore et al 
[10,11] and Krol [12,13] are borrowed 
from literature to investigate the 
performances of various models presented 
in Table (1) for computation of droplet 
growth and its temperature via traditional 
methods. 
     Moor et al nozzle consist of various 
geometries (A to D) which are shown in 
Figure 3 and the corresponding stagnation 
(boundary) conditions for all geometries 
are presented in Table (2). Detailed 
geometry and stagnation condition of Krol 
nozzle is also presented in Figure 4.   

 

 
 

Table 2: Stagnation (boundary) conditions for 
various geometries (A to D) 

 A B C  D 
P0(kpa) 25 25 25 25 
TG0(k) 354.6 357.6 358.6 361.8 

 
 

 
 Figure 3: Various geometries of converging–
diverging nozzles (used by Moor et al [10, 11]) 

 
 
 

 
Figure 4: Nozzle geometry and stagnation 

condition of Krol setup [12, 13]) 
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4. Simulation results for traditional 
methods  
     The simulation results of the traditional 
models (for pressure ratio and mean droplet 
radius distributions) for the above 
experimental data are presented in Figures 4 
to 7 for various nozzles geometries (A to D) 
of Moore et al [10,11] and Krol [12,13]. 
The computed profiles for other parameters 
especially for the droplet temperature 
distribution are not included because of the 
lack of experimental data. As it can be seen, 
all traditional models of Table 1 perform 
very similar prediction of pressure ratio 
distributions along various nozzles of case 1 
and 2. But model 5 performs more 
adequately prediction of mean droplet 
radius distribution than others (except for 
nozzle geometry A of Moor et al) for two 
cases. The next section presents a novel 
theoretical model based on mass transfer 
and energy balance equations which can 
successfully replace all models of Table 1.  
  

 

5. Theoretical mass transfer 
approach for prediction of droplet 
growth rate 
     Mass balance over a single droplet 
during growth process inside a Laval nozzle 
can be written as:  
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     where, dm  is mass of single droplet 
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m and  AN  is the molar flux of 

species A during condensation. For known 
value of AN , equation (21) can be used to 
compute the droplet growth rate. The 
following section uses a theoretical 
approach to find the mass transfer flux due 
to condensation over a spherical droplet.   
     As shown in Figure (9), mole balance for 
species A (steam) on a spherical shell of 
thickness r outside of a single droplet can 
be written as: 
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By resorting to the definition of simple 
differentiation, rearrangement of equation 
(22) leads to: 
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     Total mass flux of species A is 
comprised of two different parts: a) bulk 
flow and b) mutual diffusion of steam into 
itself: 
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where AAD  is the self-diffusion coefficient. 

 
 

 
Figure 5: Simulation results of traditional 
methods for prediction of pressure ratio 
distributions along nozzle of Krol setup 

 

 
Figure 6: Simulation results of traditional 

methods for prediction of mean droplet radius 
distribution along nozzle of Krol setup 
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Figure 7: Simulation results of traditional methods for prediction of pressure ratio distributions along 
various nozzles of Moor et al (A to D) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Simulation results of traditional methods for prediction of mean droplet radius distribution 
along various nozzles of Moor et al (A to D) 
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Figure 9: Shell balance for condensation over a single liquid droplet of radius Rd 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 10: Comparison of present model and traditional methods for prediction of pressure ratio 

distributions along various nozzles of Moor et al (A to D) 
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Figure 11: Comparison of present model and traditional methods for prediction of 
mean droplet radius distribution along various nozzles of Moor et al (A to D)

 
 
     The convective term in equation (24) 
 AbN.e.i  can be neglected due to no inter-

phase slip assumption. Substituting for NA 
from equation (24) into right hand side term 
of equation (23) leads to: 
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     Since r never becomes zero during the 
growth process, then the above equation 
reduces to: 
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     The above partial differential equation 
should be solved with the following initial 
and boundary conditions: 
 

I.C:       at   t=0     and any  r      AbA CC    

B.C.1:   at r=Rd     and any t       sat
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B.C.2:   at r    and any t       AbA CC    
 

     Where *
AC  and  AbC  are molar 

concentrations of species A (steam) at the 

surface of droplet and bulk of gas stream 
defined via following equations: 
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I.C:      at   t=0             0   
B.C.1:  at   r=Rd           1   
B.C.2:  at   r          0   
 
     Introducing )t,r(.r)t,r(   and using 
Laplace transform leads to following 
solution: 
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     Substituting AC in equation (24), the 
condensation (mass transfer) rate over a 
spherical droplet can be obtained as: 
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     Replacing AN from above equation into 
equation (21) results: 
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     The energy balance around a single 
droplet during its travel inside a Laval 
nozzle undergoing a condensation process 
can be formulated as: 
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(33) 

     where, ĥ  is heat transfer coefficient 
corrected for mass transfer and can be 
obtained by the following equation: [14] 
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ĥ


 

                                  
(34) 

     The ordinary heat transfer coefficient ( h

) can be calculated from the empirical 
correlation presented by Gyarmathy: [2] 
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     where   is thermal conductivity of 
steam. Since Rd never becomes zero during 
the growth process, then equation (33) 
expands to: 
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     Equations (32) and (36) replace all 
combinations of equations (17) to (20) in 
traditional methods as partially shown in 
Table 1.  
 

6. Validation of the proposed 
theoretical model 
     As before, experimental data of Moore et 
al [10, 11] and Krol [12, 13] are used to 
validate the results of the present growth 
model and compare its performance with 
the traditional methods. The simulation 
results obtained by simultaneous solution of 
equations 2, 4, 6, 9, 12, 15, 32 and 36 are 
shown in Figures (10) to (13). For 
comparison purposes, the results of 
traditional models of Table (1) are also 
included in these figures.  Evidently, the 
proposed method performs more adequately 
than traditional models in most cases for 
prediction of pressure ratio distributions and 
mean droplet radius profiles along various 
nozzles geometries. 

 
 
 

 Figure 12: Comparison of present model and 
traditional methods for prediction of pressure 
ratio distributions along nozzle of Krol setup 
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Figure 13: Comparison of present model and 

traditional methods for prediction of  
mean droplet radius distribution along nozzle of 

Krol setup 
 
Conclusion 
     Numerous empirical correlations are 
presented in the literature for prediction of 
liquid droplet growth rate and the 
corresponding temperature during 
condensation of a pure component (steam) 
inside a Laval nozzle. Various combinations 
of these correlations can be used to simulate 
the nucleation and growth processes inside a 
supersonic nozzle. Different combinations of 
empirical correlations show almost the same 
performances on prediction of pressure ratio 
distributions along various nozzles. On the 
other hand, some combinations perform more 
adequately estimation of mean droplet radius 
profile along the Laval nozzles.  
     None of these conventional empirical or 
semi-empirical correlations can be extended 
to binary or multi-components systems. A 
novel theoretical approach is presented in 
this article which replaces all combinations 
of empirical correlations for predictions of 
pressure ratio and mean droplet radius 
distributions along with droplet 
temperature. The proposed method not only 
very adequately performs for the real case 
studies borrowed from literature but also, it 
can be easily extended to binary or multi-
components systems. 

Nomenclature 
A Area 
a Speed of sound 
B Virial coefficient 
C Concentration 
Cp Specific heat at constant Pressure         
D Diffusion coefficient 
De Equivalent diameter 
F Friction factor 
h Enthalpy 
h Heat transfer coefficient 

ĥ   
Corrected heat transfer coefficient 

hfg Latent heat 
J Rate of formation of droplets per unit 

volume and time 
JA Diffusion rate of species A 
k Boltzmann constant 

(1.3807×10-23 J/K) 
Kn Knudsen number 

l̂     Mean free path 

m Mass of single molecule 
md Mass of single droplet 

Lm Liquid mass flow rate 

tm  Total mass flow rate 

Mw Molecular weight 
N Avogadro's number  

(6.02×1023 molecules/mole)  
NA Mass transfer rate of species A 
P Vapor pressure 

 L
sat TP

 
Saturation pressure at TL 

Qc Condensation coefficient 
r     Radius 
R Gas constant 

R̂ Gas constant on a mass basis 

Rd Mean droplet radius 
S   Super-saturation ratio 
T Temperature 
TL       Droplet temperature 
U   Velocity 
   Specific heat capacity ratio  

G   
Kinematic viscosity of vapor 

 Density 
 Coefficient of thermal conductivity    
 Surface tension 
  non-isothermal correction factor           

Subscripts 
A Species A (steam) 
b bulk 
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G Vapor phase 
L Liquid phase 
in inlet 

                

Superscripts 
* Critical droplet 
sat saturation 
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