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Abstract

In this paper, a new robust approach based on Least Square Support 
Vector Machine (LSSVM) as a proxy model is used for an automatic 
fractured reservoir history matching. The proxy model is made to 
model the history match objective function (mismatch values) based 
on the history data of the field. This model is then used to minimize the 
objective function through Particle Swarm Optimization (PSO) and Im-
perialist Competitive Algorithm (ICA). This procedure leads to match-
ing of history of the field in which a set of reservoir parameters is used. 
The final sets of parameters are then applied for the full simulation 
model to validate the technique. The obtained results showed that due 
to high speed and need for little data sets, LSSVM is the best tool to 
build a proxy model. Also the comparison of PSO and ICA showed that 
PSO is less time-consuming and more effective. 
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1. Introduction

Numerical reservoir simulation could provide 
the ability to understand the real reservoir 
behavior. To propel the simulated data to 

the real data, it is necessary to carry out the his-
tory matching operations and tune the reservoir 
parameters [1].

 The main stages of the history matching pro-
cess involve selecting parameters, defining the 
mathematical model, defining the objective func-
tion, analyzing sensitivity and stop conditions. The 

major problems in history matching are: 1) gener-
ally, history matching is done manually and due to 
the enormous number of data used, a desired result 
is not achieved.; 2) it would be difficult to adjust the 
parameters to obtain the match due to the large 
number of reservoir parameters; 3) optimization 
algorithms used in the history matching process, 
optimize the problem locally; thus, when there are 
several minimums an acceptable solution would 
not be provided; and 4) typical history matching 
procedure works for one simulation model and 
does not have the ability to work with several num-
ber of models. To solve the problems mentioned 
above, different techniques of automatic history 
matching were offered. In the proper procedure, 
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one of the most important activities to achieve an 
acceptable result is to improve the optimization al-
gorithms to achieve global minimum [2]. 

Two of the most famous global optimizers 
in the literature are employed: the PSO and ICA. 
These two algorithms need large number of objec-
tive function evaluation for optimization but each 
function evaluation needs a full simulation run 
which is time consuming. In order to reduce the 
function evaluation time, proxy models are used.  
Proxy models are alternatives to the reservoir sim-
ulation model. A good proxy model should have 
the following features [3, 4]: 1) an acceptable imi-
tation of nonlinear behavior  of  the  actual  model,  
2)  a  simple  application,  3)  straight forward con-
struction. A number of proxy models are used for 
reservoir simulation by different authors and each 
proxy model has been used for a particular reser-
voir and application [5]. Proxy models can simplify 
the process of finding the optimal values of reser-
voir parameters to reach the history matching by 
speeding up the calculations. This is very impor-
tant for fractured reservoir because of its complex 
behavior.

History matching of fractured reservoirs poses 
more challenges compared to conventional reser-
voirs in two main areas: the number and type of 
history matching parameters, and the increased 
computational cost. For example, in the single po-
rosity model, relative permeability and kv⁄kh (kv: 
vertical permeability; kh: horizontal permeability) 
are uesd as matching parameters in the match of 
water cut and gas production, whereas the match-
ing parameters in the dual porosity model are frac-
ture porosity, shape factor and kfv⁄kfh (kfv: fracture 
vertical permeability; kfh: fracture horizontal per-
meability). The dual porosity models have longer 
execution time than the single porosity models be-
cause of the large number of parameters. Also, the 
inter-porosity flow between the matrix and frac-
ture poses additional challenge arising from the 
matrix-fracture interactions because it requires 
extensive computation. The doubling of the num-
ber of computational cells and significant non-
linearity increase the computations required to 
evaluate the dual porosity model compared with 
an equivalent single porosity model. A partial rep-
resentation of the fracture networks or describing 
them in a simplistic way in reservoir models due 
to scarcity of fracture data or lack of necessary nu-
merical tools is one of the challenges of the frac-
tured reservoir history matching.

Considering the importance of proxy applica-
tion in the history matching, many studies have 
been carried out in this area. Cullik et al. conduct-

ed the history matching using a nonlinear proxy 
and global optimization [6]. They used the neural 
networks as a proxy model and showed that the 
required number of simulation runs to obtain a 
good history match can be reduced by the neural 
network. Yu et al. used the genetic programming 
as a proxy model for history matching [7]. Zhang et 
al. provided an automatic history matching based 
on improved genetic algorithm [1]. They showed 
that the rate of convergence of the automatic his-
tory matching can be significantly increased by the 
improved genetic algorithm. Rammay et al. used 
the Adaptive Neuro-Fuzzy System (ANFIS) as a 
proxy to reservoir simulator [8]. They combined 
ANFIS and Differential Evolution (DE) algorithm 
to reduce the number of simulation runs and the 
expensive simulation time. Maschio et al. replaced 
the flow simulator by proxy models created by ar-
tificial neural network (ANN) to make possible the 
application of the sampling method in the history 
matching [9]. They used Markov Chain Monte Car-
lo (MCMC) sampling and combined it with ANN. 
Goodwin appraised the limitations of random 
walk MCMC [10]. They showed that a combination 
of MCMC and proxy models provide a more reli-
able probabilistic uncertainty quantification and a 
suitable ensemble of deterministic reservoir mod-
els. He et al. proposed the proxy-for-data approach 
[11]. In their work, the aggregated mismatch was 
calculated by the data values predicted by proxies. 
They also reduced the number of proxies needed 
by using of reduced order modeling.

In this paper, use of Least Square Support Vec-
tor Machine (LSSVM) as a nonlinear proxy model 
is proposed and a history match workflow with 
strong and nonlinear LSSVM proxy model to im-
prove the history matching process is presented. 
One of the Iranian fractured reservoir simulation 
model and its history data is used as the case study.  

2. LSSVM for Function Approximation

Considering the high performance of the support 
vector machine (SVM) in function approximation, 
the application of this algorithm has caused a sig-
nificant growth in the field of oil reservoir mod-
eling. SVM as a learning organization takes the 
nonlinear problems into high dimensional feature 
space and solves the problem through the kernel 
functions. Accordingly, SVM forecasts the functions 
so that the desired functions are developed on the 
subset of support vectors [12, 13, 14, 15 and 16]. 
A version of SVM for regression is called support 
vector regression (SVR).
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The purpose of SVR is to find a function f(x) that 
has at most ϵ deviation from the actually obtained 
targets y(i)  for all the training data, and is as flat as 
possible simultaneously. In the case where f(x) is a 
linear function of the form f(x) =ωTx + b, the result-
ing primal optimization problem is shown in the 
following form [17]:

Minimize

Subject to

             (1)                                                                                       

• ωTω controls the trade-off between the com-
plexity and the approximation accuracy of the 
model

• εi, εi* are slack variables that measure the error 
of the up and down sides, respectively

• C controls the trade-off between the error and 
margin

This optimization problem can transformed 
into the dual problem, which is easier to solve, and 
its solution is given by

 (2)                                                                                                      

subject to  0 ≤ αi*,αi ≤ C  

Where αi* and αi are called the lagrangian mul-
tipliers are in Eq. (2), which satisfy the equalities 
αi*αi=0, αi>0 and αi*≥0 and nSV is the number of 
Support Vectors (SVs) and the kernel function

(3)                                                                                                         

In order to reduce complexity and increase 
computing speed, modified SVM as LSSVM is of-
fered [18]. LSSVM as a approximation function is 
to estimate a function y(x) from a given training 
set of N samples                  in which xi ∈ RN (N di-
mensional vector space) as input data and yi ∈ r 
(one dimensional vector space) as corresponding 
output data [19]. LSSVM suggests the following 
equation to estimatey (x):

y(x)=wTφ(x)+b                                                          (4)                                                                                                                            

Where the nonlinear function φ(x) takes the 
input data into a high dimensional feature space 
to reduce the complexity and increase the speed 
of problem solving; b is the bias value and w is a 

weight vector having the similar dimension with 
the defined space dimension. To approximate LSS-
VM, y(x) should optimize the following problem 
[19]:

 
                                      Must be minimized

Where γ* = regularization parameter and ei = 
error variable. After minimization the above prob-
lem, y(x) can be obtained as follows [7]:

    (5)                                                                                                                

Where k(x, xi) is the kernel function and α_i  is La-
grange multiplier called the “support value” which 
αi and b are obtained from optimization problem 
described above. There are different forms of ker-
nel functions such as linear, polynomial and radial 
basis function (RBF) [20]. Table 1 shows common 
kernel function and corresponding mathematical 
expression. 
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actually obtained targets y(i) for all the 
training data, and is as flat as possible 
simultaneously. In the case where f(x) is a 
linear function of the form f(x) = ωTx + b, 
the resulting primal optimization problem is 
shown in the following form [17]: 

Minimize   12 ωTω + C ∑ (εi + εi
∗)m

i=1  

Subject to 

 {
y(i) − ωTx(i)  − b ≤  ϵ + εi 
ωTx(i) − y(i) + b ≤ ϵ + εi

∗

ϵ, εi,  εi
∗ ≥ 0

                   (1)                                                                                        

 ωTω  controls the trade-off between the 
complexity and the approximation 
accuracy of the model 

 εi , εi
∗  are slack variables that measure 

the error of the up and down sides, 
respectively 

 C controls the trade-off between the error 
and margin 

   This optimization problem can 
transformed into the dual problem, which is 
easier to solve, and its solution is given by 

f(x) =  ∑ (αi − αi
∗)k(xi, x)nSV

i=1                     (2)                                                                                                       

subject to  0 ≤ αi
∗, αi ≤ C   

   Where αi
∗ and αi are called the lagrangian 

multipliers are in Eq. (2), which satisfy the 
equalities αi

∗αi=0, αi > 0 and αi
∗ ≥ 0 and 

nSV is the number of Support Vectors (SVs) 
and the kernel function 

K(x, xi) =  ∑ gi(x)gi(xi)m
j=1                        (3)                                                                                                          

    In order to reduce complexity and 
increase computing speed, modified SVM as 
LSSVM is offered [18]. LSSVM as a 
approximation function is to estimate a 
function y(x) from a given training set of N 
samples {xi, yi}i=1

N  in which xi  ∈  RN (N  
dimensional vector space) as input data and 
yi ∈  r (one dimensional vector space) as 
corresponding output data [19]. LSSVM 
suggests the following equation to 
estimatey (x): 

y(x) = wTφ(x) + b                                  (4)                                                                                                                             

   Where the nonlinear function φ(x) takes 
the input data into a high dimensional 
feature space to reduce the complexity and 
increase the speed of problem solving; b  is 
the bias value and w is a weight vector 
having the similar dimension with the 
defined space dimension. To approximate 
LSSVM, y(x) should optimize the following 
problem [19]: 

   12 wTw + γ ∗ 1
2 ∑ ei

2N
i=1     

   Where γ ∗ = regularization parameter and 
ei = error variable. After minimization the 

above problem, y(x) can be obtained as 
follows [7]: 

y(x) = ∑ αiK(x, xi)N
i=1 + b                        (5)                                                                                                                 

   Where k(x, xi) is the kernel function 
and αi  is Lagrange multiplier called the 
“support value” which αi and b are obtained 
from optimization problem described above. 
There are different forms of kernel functions 
such as linear, polynomial and radial basis 
function (RBF) [20]. Table 1 shows common 
kernel function and corresponding 
mathematical expression.  

Table 1: Common kernel function and 
corresponding mathematical expression. 

 
Among the forms available for the 
construction of kernel function, RBF has the 
maximum efficiency and can improve the 
performance of the LSSVM [21]. Table 2 
shows the performance of LSSVM with 
different kernels.  

Table 2: The performance of LSSVM with 
different kernels 

 
The RBF is defined as follows [7]: 

K(x1, x2) = exp(−‖x1 − x2‖2 2σ2⁄ )        (6)                                                                                                     

   Where σ 2 is the width of RBF. The values 
of γ ∗ and σ2 are gained during the training 
of LSSVM [19]. 

3. Particle Swarm Optimization 
(PSO) 
   The Particle Swarm Optimization (PSO), 
which was first presented by Kennedy and 

Eberhart [22], could be a strong competitor 
to other evolutionary algorithms that solve 
global optimization problems [23]. PSO as a 
stochastic optimization technique is the 
model of the motion of a group of birds and 
fishes [23]. Works done by other authors 
showed that PSO acts quickly and more 
efficiently compared to other optimization 
techniques like Genetic Algorithms (GA) 
and DE [24]. PSO has the same 
effectiveness (finding the true global optimal 
solution) as the GA but with significantly 
better computational efficiency (less 
function evaluations) by executing statistical 
analysis and formal hypothesis testing [25].  
Another reason that PSO is interesting is that 
it has a small number of parameters to tune, 
its formula is simple and easy to implement 
in computer [26]. 

   In PSO, a set of randomly generated 
solutions, called particles, fly through the 
problem hyperspace. According to the 
following equations, the position of each 
particle is changed according to its own 
experience (pbest) and that of its neighbors 
(gbest) [22]: 

vi+1 = w vi + c1r1(pbesti − xi) +
c2r2(gbesti − xi)                                       (7)                                                                       

xi+1 = xi + ∆t vi+1                                    (8)                                                                                                          
 v   is the particles speed 
 r1 , r2  are two random numbers 

generated in the interval [0, 1] 
 c1 (Self Confidence), c2 (Swarm 

Confidence) are intensities of attraction 
towards pbest and gbest respectively 

 ∆t  is a time parameter which represents 
the advance step of the particles 

 w   is a factor of inertia which controls 
the velocity effect. In this work, the value 
of 1 was used for w   

   At iteration i+1, the velocity of a particle 
is updated and two forces that attract the 
particle to pbset and gbest. The position of 
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Polynomial function K(xi, x)= (xi

Tx + 1)d,  d= 1,2,3, … 

Model RMSE ARE 𝐑𝐑𝟐𝟐 
LSSVM 
(linear) 48.274 0.9821 0.7856 

LSSVM 
(radial) 25.639 0.7302 0.9491 

LSSVM 
(polynomial) 37.821 0.8329 0.8635 

Table 1. Common kernel function and corresponding math-
ematical expression.

Kernel function Mathematical expression

Linear function K(xi, x)= <xi,x>

Radial basis function K(xi, x)=exp(-‖xi-x‖2⁄2σ2 )                                                                                                          

Polynomial function K(xi, x)= (xT
ix+1)d, d= 1,2,3, …

Among the forms available for the construction 
of kernel function, RBF has the maximum efficien-
cy and can improve the performance of the LSSVM 
[21]. Table 2 shows the performance of LSSVM 
with different kernels. 

Table 2. The performance of LSSVM with different kernels.

Model RMSE ARE R2

LSSVM (linear) 48.274 0.9821 0.7856

LSSVM (radial) 25.639 0.7302 0.9491

LSSVM (polynomial) 37.821 0.8329 0.8635

The RBF is defined as follows [7]:
K(x1, x2) = exp(-‖x1-x2‖2⁄2σ2)                              (6)                                                                                                    

Where σ2 is the width of RBF. The values of γ* 
and σ2 are gained during the training of LSSVM 
[19].
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Figure 1. Concept of modification of a searching point by 
PSO [27].

3. Particle Swarm Optimization (PSO)

The Particle Swarm Optimization (PSO), which 
was first presented by Kennedy and Eberhart 
[22], could be a strong competitor to other evolu-
tionary algorithms that solve global optimization 
problems [23]. PSO as a stochastic optimization 
technique is the model of the motion of a group of 
birds and fishes [23]. Works done by other authors 
showed that PSO acts quickly and more efficiently 
compared to other optimization techniques like 
Genetic Algorithms (GA) and DE [24]. PSO has the 
same effectiveness (finding the true global optimal 
solution) as the GA but with significantly better 
computational efficiency (less function evalua-
tions) by executing statistical analysis and formal 
hypothesis testing [25].  Another reason that PSO 
is interesting is that it has a small number of pa-
rameters to tune, its formula is simple and easy to 
implement in computer [26].

In PSO, a set of randomly generated solutions, 
called particles, fly through the problem hyper-
space. According to the following equations, the 
position of each particle is changed according to 
its own experience (pbest) and that of its neigh-
bors (gbest) [22]:

vi+1 = w vi+c1r1 (pbesti-xi)+c2r2 (gbesti-xi)                   (7)                                                                      

xi+1 = xi+∆t vi+1                                                               (8)                                                                                                         

• v is the particles speed
• r1, r2 are two random numbers generated in the 

interval [0, 1]
• c1 (Self Confidence), c2 (Swarm Confidence) 

are intensities of attraction towards pbest and 
gbest respectively

• ∆t is a time parameter which represents the ad-
vance step of the particles

• w is a factor of inertia which controls the veloc-
ity effect. In this work, the value of 1 was used 
for w

At iteration i+1, the velocity of a particle is up-
dated and two forces that attract the particle to 
pbset and gbest. The position of each particle is 
updated using its velocity vector in the end of the 
iteration.

PSO is expressed in the following simple com-
mands [27]: 
1. Initialize the swarm particles with random 

placement of particles in parameter space such 
that each particle has an acceptable random ve-
locity;

2. Calculate and evaluate the cost function for 
each particle;

3. Compare the value of each particle with its per-
sonal best position (pbest). If the current value 
of the desired particle is better than the pbest 
value, the position of the particle and pbest are 
replaced with each other;

4. Update the position and the cost function of 
global best (gbest);

5. Update the position and velocity of every par-
ticle after steps 1 to 4;  

6. Continue steps 1 to 5 until stopping conditions 
are reached such as the maximum number of it-
erations and/or the appropriate cost function.

Fig. 1 shows how to update the position of the 
particle by PSO.
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conditions are reached such as the 
maximum number of iterations and/or the 
appropriate cost function. 

   Fig. 1 shows how to update the position of 
the particle by PSO. 
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4. Imperialist Competitive 
Algorithm (ICA) 
   Imperialism is a policy that an imperialist 
applies it in order to extend its power 
beyond its boundaries. Countries colonized 

by the colonizer are controlled directly or 
indirectly such as controlled goods or raw 
materials [28]. An algorithm based on this 
policy named: Imperialist Competitive 
Algorithm (ICA) was presented by 
Atashpaz-Gargari and Lucas [29]. ICA as a 
sociopolitical global search technique was 
presented for different optimization 
problems recently. 

 There are many studies about the 
application of the optimization techniques 
such as PSO, GA and DE in history 
matching while ICA is rarely used. ICA is a 
new optimization technique. The aim of this 
work is to evaluate the performance of ICA 
in history matching. Also, the works done in 
other fields showed that ICA has exhibited 
excellent abilities such as accuracy, faster 
convergence and better global optimum 
attainment compared to traditional GA [30]. 

   Like PSO, ICA starts with an initial 
random population. Each individual of the 
population called countries are divided into 
two types: colonies and imperialists that all 
together create some empires. Imperialistic 
competition among these empires is the core 
of ICA. In this step, based on the cost of the 
imperialists, each country is allocated to an 
empire. Firstly, the total cost of every empire 
is calculated and normalized according to 
following equations [29]: 

T. C.n =  Cost(imperialistn) +
 ξ . mean {Cost(colonies of empiren)}     (9)                                               

N. T. C.n =  T. C.n− max {T. C.i }              (10)   

Where                                                                                                        

 T. C.n   is the total cost 
 N. T. C.n   is the normalized total cost of 

the nth empire 
 ξ  is a little positive number which  is  

considered  to  be  less  than  1. This 
value determines the role of the colonies 
in determining the total power of an 
empire. 
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and better global optimum attainment compared 
to traditional GA [30].

Like PSO, ICA starts with an initial random pop-
ulation. Each individual of the population called 
countries are divided into two types: colonies and 
imperialists that all together create some empires. 
Imperialistic competition among these empires is 
the core of ICA. In this step, based on the cost of 
the imperialists, each country is allocated to an 
empire. Firstly, the total cost of every empire is 
calculated and normalized according to following 
equations [29]:

T.C.n = Cost (imperialistn)+ ξ .mean {Cost (colo-
nies of empiren}                                                               (9)

N.T.C.n = T.C.n-max {T.C.i}                                       (10)  

Where                                                                                                       

• T.C.n is the total cost
• N.T.C.n is the normalized total cost of the nth 

empire
• ξ is a little positive number which  is  consid-

ered  to  be  less  than  1. This value determines 
the role of the colonies in determining the total 
power of an empire.

After creating initial empires, the colony moves 
toward the imperialist by x units, and the moving 
model is shown in Fig. 2 [29]. 

selected. This colony is colonized by other empires 
through competition. The possession probability 
of each empire is given by the equation (12) and 
form the vector P as the equation (13) [29]:

   (12)                                                                                                                             

               (13)                                                                                                        

A vector R with the same size as P whose ele-
ments are uniformly distributed random numbers 
is produced as the equation (14):

where     

                    (14)   
                                                     
Then vector D is created by simply subtracting 

R from P, as the equation (15): 

                   
 (15)           

   

Finally, the empire whose related index in D is 
maximized will obtain the mentioned colony. The 
competition continues until the stop condition is 
met. The stop condition can be one of the follow-
ing:

• A preset maximum number of iterations is 
reached

• All the colonies is under the control of unique 
empire

  The weak empires gradually lose their colo-
nies and ultimately they will collapse. The impe-
rialistic competition and the collapse mechanism 
will cause all the colonies to converge to a state in 
which there exists just one empire.This remaining 
empire stands for the solution.

   The following workflow is offered to apply the 
ICA at the computer system [23]: 
1. Initialize to generate the initial empires and 

colonies; 
2. Move the colonized countries towards self-em-

pire (assimilation); 
3. Change the position of some countries under 

colonial randomly (revolution); 

   After creating initial empires, the colony 
moves toward the imperialist by x units, and 
the moving model is shown in Fig. 2 [29].  

 

 

 

 

 
 

Figure 2: Movement of colonies toward their 
relevant imperialist in a randomly deviated 

direction. 
In this movement, θ and x are random 
numbers with uniform distribution as 
demonstrated in equation (11) and d is the 
distance between the colony and the 
imperialist. 

x~U(0,β × d),θ~U(-γ, γ)                          (11)                                                                                                               

   Where  β and γ are arbitrary numbers that 
modify the random searching domain of 
colonies around the imperialist.  
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is selected. This colony is colonized by other 
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given by the equation (12) and form the 
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−
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   Finally, the empire whose related index in 
D is maximized will obtain the mentioned 
colony. The competition continues until the 
stop condition is met. The stop condition can 
be one of the following: 

 A preset maximum number of iterations 
is reached 

 All the colonies is under the control of 
unique empire 
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collapse mechanism will cause all the 
colonies to converge to a state in which there 
exists just one empire.This remaining empire 
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   The following workflow is offered to 
apply the ICA at the computer system [23]:  

1. Initialize to generate the initial empires 
and colonies;  

2. Move  the  colonized countries  towards  
self-empire (assimilation);  

3. Change the position of some countries 
under colonial randomly (revolution);  

4. Replace the position of a country with its 
empire if the cost function of the country 
in a colonial is greater than its empire; 

5. Calculate and compare the total cost of all 
empires with each other. (total cost  for 
an empire depends on the strength of the 
emperor and its controlled countries);  

6. Transfer the colonies of the weakened 
empire to the empire with greater power 
(imperialistic competition);  

7. Remove the weakest empire; 
8. Continue steps 2 to 7 so that it reaches the 

stop condition. 
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4. Replace the position of a country with its em-
pire if the cost function of the country in a colo-
nial is greater than its empire;

5. Calculate and compare the total cost of all em-
pires with each other. (total cost  for an empire 
depends on the strength of the emperor and its 
controlled countries); 

6. Transfer the colonies of the weakened empire 
to the empire with greater power (imperialistic 
competition); 

7. Remove the weakest empire;
8. Continue steps 2 to 7 so that it reaches the stop 

condition.

5. A Case Study

A sector of one of the Iranian fractured reservoir 
in the Ahwaz oilfield has been used for this study. 
This reservoir is part of the Asmari reservoir and is 
mainly composed of carbonate entities (limestone 
and dolomite). Oil, water and gas exist as three 
phase in this reservoir. The schematic diagram of 
the reservoir is shown in Fig. 3. Other properties of 
the reservoir are summarized in Table 3. The res-
ervoir is double porosity. 

This case study is a highly fractured reservoir 
such that pressure of all wells is equal in the whole 
reservoir. Also, the performances of the wells such 
as well productivity index are very similar. There-

fore, the fractures properties can be assumed ho-
mogeneous with good approximation.

In fact, the problem of this type of fractured 
reservoirs is dependence of the model output such 
as water and gas production rate and coning phe-
nomenon upon the fractures properties (fracture 
porosity, shape factor and etc). Due to lack of frac-
ture data such as Formation Micro Scanner (FMS) 
and Formation Micro Imaging (FMI), fracture mod-
eling has not been established.

Despite the homogeneity of the fracture sys-
tem, the matrix systems are quite heterogeneous. 
To show this heterogeneity, matrix porosity dis-
tribution is shown in Fig. 4. Also, Fig. 5 shows the 
histogram of matrix porosity distribution in cells.

There is little or no difference between this 
fractured reservoir and conventional reservoir in 
history matching process because this model is a 
highly fractured reservoir and fracture properties 
are largely homogeneous. But the main difference 
between this dual porosity model and conven-
tional model is longer execution time in history 
matching process. Therefore, the main objective of 
this paper is to reduce the necessary runtime for 
matching of history of the field.  Another aim of 
this work is to evaluate the LSSVM performance as 
a proxy model in this type of fractured reservoirs.

Fig. 6 shows the location of the drilled wells. In 
this reservoir, 18 wells have been drilled. All the 
drilled wells have production except well #7. In or-

Property Value Property Value
X Dimension 53 Ave Matrix Perm (x & y) (md) 0.18589
Y Dimension 15 Ave Matrix Perm (z) (md) 0.34677
Z Dimension 146 Ave  Matrix Porosity 0.05503

Ave Fracture Dx (ft) 1174 Ave  Fracture Pressure (psi) 3223.6
Ave Fracture Dy (ft) 1543.6 Ave  Matrix Pressure (psi) 3219.4
Ave  Fracture Dz (ft) 22.169 Ave  Fracture Oil Saturation 0.58231
Ave  Matrix Dx (ft) 1207.9 Ave  Fracture Water Saturation 0.33771
Ave Matrix Dy (ft) 1559.9 Ave  Matrix Oil Saturation 0.36983
Ave Matrix Dz (ft) 22.246 Ave  Matrix Water Saturation 0.61439

Active Phases Live Oil , Water and Gas Water Density (Ib ⁄ ft3) 62.428
Number of Active Cells (Fracture) 58035 Gas Density (Ib ⁄ ft3) 0.0608
Number of Active Cells (Matrix) 58035 Oil Density (Ib ⁄ ft3) 51.78
Ave Fracture Perm (x & y) (md) 707.09 OWC (ft) 6070

Ave  Fracture Perm (z) (md) 445.41 GOC (ft) 2750
Ave Fracture Porosity 0.00786 IOIP (STB) 3553366676

Table 3. Reservoir properties in full simulation model.
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Figure 4. Matrix porosity distribution.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Parameters 

 

 
Data 
No. 

 
Base 
Value 

 
Min 

 
Max 

 
Mean 

 
Standard 
Deviation 

Aquifer Porosity 480 0.1 0.03 0.2 0.054222972 0.009505285 
Aquifer Permeability (md) 480 20 1 2000 1025.057408 575.5163989 

Aquifer Raduis (ft) 480 5000 3000 25000 19041.81708 3214.940298 
Aquifer Height (ft) 480 2000 700 3000 1858.985328 636.4149481 

Aquifer Compressibility (𝐩𝐩𝐩𝐩𝐩𝐩−𝟏𝟏) 480 5.0 × 10−5 9.89× 10−5 2.96× 10−4 0.000199214 5.72527× 10−5 
Matrix Compressibility (𝐩𝐩𝐩𝐩𝐩𝐩−𝟏𝟏) 480 3.55 × 10−6 2× 10−6 15× 10−6 8.71× 10−6 3.72571× 10−6 

Fracture Compressibility (𝐩𝐩𝐩𝐩𝐩𝐩−𝟏𝟏) 480 160 × 10−6 150× 10−6 200× 10−6 0.000175379 1.41999× 10−5 
Shape factor (ft-2) 480 0.002 0.0001 0.1 0.050673449 0.028564032 

Matrix block height (ft) 480 20 10 100 56.34262044 26.09562503 
Pore volume multiplier 480 0.5 0.2 1 0.634034597 0.213547505 

Fracture Permeability (z) (md) 480 100 90 500 350.1113464 87.10665108 
Fracture Permeability (x&y)(md) 480 1000 50 2000 1043.143136 556.5866535 

Fracture Porosity 480 0.002 0.0001 0.01 0.005592596 0.002747863 
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6. Methodology

6.1. Data Preparation
Due to high level of Iranian fractured reservoirs 
heterogeneities, these reservoirs are described by 
wide range of uncertainties. These uncertainties 
mostly originate from unknown fracture network, 
aquifer volume and etc.Uncertainties in Iranian 
fractured reservoirs have many sources and may 
be created anywhere within the reservoir model-
ing workflow [31]. All these uncertainties lead to a 
complex reservoir model. Therefore evaluation of 
this model produces unacceptable results.
In this work, parameters that have wide range of 
uncertainty are selected as matching parameters 
so that fractured reservoirs evaluation will be im-
proved by finding the appropriate value of these 
parameters in history matching process. Table 4 
shows the 13 parameters as input data to build a 
proxy model for history matching. These param-
eters will have wide range of uncertainty and the 
greatest impact on the behavior of fractured res-
ervoirs. 

The most important step to build a high-per-
formance proxy model is sampling the input data 
(design of experiments on data) [5]. Several meth-
ods for data sampling and design of experiments 
are available like full factorial designs in two lev-
els, Plackett-Burman designs and Latin Hypercube 
Sampling (LHS). Among sampling methods, LHS 
has more computational efficiency. To design n 
samples of data, LHS acquires cumulative-proba-

bility distribution for each input parameter. Then 
LHS offers n uniform distributed points on cumu-
lative-probability distribution for each parameter. 
Obtained values for the input parameters related 
to these n points, are combined together to create 
the sampling randomly. Using the LHS, 480 data 
sets as input files to run in full simulation model 
were generated from the 13 parameters. Table 4 
shows a summary of the 480 data sets features. 
The base value column in Table 4 shows the values 
of these 13 parameters before history matching 
process. These 480 data sets as input parameters 
are used to build the proxy model. We are going to 
match the oil, water and gas rates and well static 
pressures for all wells in this paper. After running 
the full simulation model, the oil, water and gas 
rates and static pressures as the full simulation 
model outputs are used to create the objective 
function. The objective function (mismatch func-
tion) is defined by the following equation.

Objective Function =                                           (16)                                                                                                

yi
calc(x) as the simulation value is achieved from 

simulator model. yi
obs(x) as the observed value is 

obtained from reservoir production history. σi rep-
resents the standard deviation of the observed val-
ues. In this work, the objective function is defined 
for the oil, gas and water rates and static pressures 
separately. The final objective function (final out-
put) is the weighted sum of the objective functions 
that is defined for the oil, gas and water rates and 

Parameters Data 
No.

Base 
Value Min Max Mean Standard 

Deviation
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Aquifer Compressibility (psi-1) 480 5.0×10-5 9.89×10-5 2.96×10-4 0.000199214 5.72527×10-5

Matrix Compressibility (psi-1) 480 3.55×10-6 2×10-6 15×10-6 8.71×10-6 3.72571×10-6

Fracture Compressibility (psi-1) 480 160×10-6 150×10-6 200×10-6 0.000175379 1.41999×10-5
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Matrix block height (ft) 480 20 10 100 56.34262044 26.09562503
Pore volume multiplier 480 0.5 0.2 1 0.634034597 0.213547505

Fracture Permeability (z) (md) 480 100 90 500 350.1113464 87.10665108
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Table 4. Input parameters.
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static pressures. Fig. 7 shows how to create the 
final objective function needed to build the proxy 
model. 

Required weights of the weighted sum have 
been used for assimilation the objective functions 
impact on the final objective function.The weights 
were adjusted based on the magnitude of the oil, 
water and gas rates and static pressure.  Due to 
the higher magnitude of the oil rate, the smallest 
weight for the oil rate was selected. Table 5 shows 
weights value used in construction of the final ob-
jective function.

Figure 7. Final objective function construction.
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the standard deviation of the observed 
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static pressures. Fig. 7 shows how to create 
the final objective function needed to build 
the proxy model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Required weights of the weighted sum have 
been used for assimilation the objective 
functions impact on the final objective 
function.The weights were adjusted based on 
the magnitude of the oil, water and gas rates 
and static pressure.  Due to the higher 
magnitude of the oil rate, the smallest weight 
for the oil rate was selected. Table 5 shows 
weights value used in construction of the 
final objective function. 
Table 5: Weights value used in construction of the 

final objective function. 
 

 

 

6.2. Proxy Construction using LSSVM 
   The proxy model construction based on 
LSSVM is summarized as following steps 
[20]: 

 

 

 

 

 

 

 

Weights Value 
𝐰𝐰𝟏𝟏 𝐰𝐰𝟐𝟐 𝐰𝐰𝟑𝟑 𝐰𝐰𝟒𝟒 
5 10 10 10 

Figure 6: Location of the drilled wells 

 

Figure 7: Final objective function 
construction. 

 

training, validation and testing. The training 
and validation dataset are used to build the 
LSSVM model and the tested data set are used 
to verify and evaluate the performance and ef-
ficiency of this model. 

2. Initialize the parameters σ2 and γ* using the 
training dataset. (regularization parameter 
(γ*) and kernel width parameter (σ2) play an 
important role in the LSSVM performance. The 
task of γ* is creating a suitable LSSVM struc-
ture based on the minimum training error and 
is minimizing the model complexity. The input 
data in original space is transferred into a high-
dimensional feature space by σ2. The small val-
ue of σ2 causes the over fitting. Also the large 
value of σ2 reduces the LSSVM accuracy [32]).

3. Using the grid search technique with cross-
validation method, the optimal values of pa-
rameters σ2 and γ* were obtained. In this work, 
ten-fold cross-validation is used. In this pro-
cess, the training datasets are divided into ten 
equal parts. The grid training data consists of 
nine equal parts and remaining part devoted to 
grid validation data. LSSVM will be trained by 
the grid training data. σ2 and γ* are also opti-
mized via the training process of LSSVM. After 
training the LSSVM, this model is tested by grid 
validation data and this operation is repeated 
ten times .The LSSVM training and testing pro-
cesses continue until a stopping condition is 
reached.  In this condition, optimal value of σ2 

and γ* can be achieved with the minimized er-
ror. 

4. After obtaining the optimum value of σ2 and 
γ*, these parameters are used to construct the 
LSSVM model.  

5. After building the LSSVM model, the testing 
datasets are applied on the model in order to 
investigate the model performance.

Table 6 shows the optimum value of σ2 and γ* 
to build the LSSVM model in this paper. 

Table 5. Weights value used in construction of the final ob-
jective function.

Weights Value
w1 w2 w3 w4

5 10 10 10

6.2. Proxy Construction using LSSVM
The proxy model construction based on LSSVM is 
summarized as following steps [20]:
1. The entire dataset are divided into three parts: 
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6.3. Evaluation of Model Performance
Assessment the accuracy of the prediction model 
is the last and most important step in the modeling 
process. In this work, quantitative analysis is used 
to evaluate the model performance. Therefore, 
correlation coefficient (R2), absolute relative er-
ror (ARE) and root mean square error (RMSE) are 
used for quantitative analysis. ARE shows close-
ness of the simulated data with the actual data. 
ARE is defined as:

ARE =                                                                         (17)

Where, yi is an actual data and ŷî is a forecasted 
value obtained by proxy model. R2 provides a val-
ue that represents the amount of success in reduc-
ing the standard deviation by regression analysis. 
R2 is defined as:

                          (18)                
                                                                                                          
Where y�  is the average of yi. 
RMSE represents the difference between the 

simulation data and real data. RMSE is defined as:

RMSE =                                                                      (19)

Where, n is the number of observation data. 

7. Results 
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and used for the training of the proxy model. 40 
cases are selected randomly among the training 
cases and used to validate the proxy model. 40 
cases were also made and used for the testing of 
the proxy model. The datasets of these cases are 

Table 6. The optimal parameter combination (γ, σ2) to build 
the LSSVM model.

Tuned  Parameters
γ* σ2

3.1392 1.5982
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n                                     (19)                                                                                                                              

    Where, n is the number of observation 
data.  

7. Results  

1. The entire dataset are divided into three 
parts: training, validation and testing. The 
training and validation dataset are used to 
build the LSSVM model and the tested 
data set are used to verify and evaluate 
the performance and efficiency of this 
model.  

2. Initialize the parameters σ2 and γ ∗ using 
the training dataset. (regularization 
parameter (γ ∗) and kernel width 
parameter (σ2) play an important role in 
the LSSVM performance. The task of γ ∗ 
is creating a suitable LSSVM structure 
based on the minimum training error and 
is minimizing the model complexity. The 
input data in original space is transferred 
into a high-dimensional feature space by 
σ2. The small value of σ2 causes the over 
fitting. Also the large value of σ2 reduces 
the LSSVM accuracy [32]). 

3. Using the grid search technique with 
cross-validation method, the optimal 
values of parameters σ2 and γ ∗ were 
obtained. In this work, ten-fold cross-
validation is used. In this process, the 
training datasets are divided into ten 
equal parts. The grid training data 
consists of nine equal parts and remaining 
part devoted to grid validation data. 
LSSVM will be trained by the grid 
training data. σ2 and γ ∗ are also 
optimized via the training process of 
LSSVM. After training the LSSVM, this 
model is tested by grid validation data 
and this operation is repeated ten times 
.The LSSVM training and testing 
processes continue until a stopping 
condition is reached.  In this condition, 
optimal value of σ2 and γ ∗ can be 
achieved with the minimized error.  

4. After obtaining the optimum value of σ2 
and γ ∗, these parameters are used to 
construct the LSSVM model.   

5. After building the LSSVM model, the 
testing datasets are applied on the model 

in order to investigate the model 
performance. 

   Table 6 shows the optimum value of σ2 
and γ ∗ to build the LSSVM model in this 
paper.  

Table 6: The optimal   parameter combination 
(𝜸𝜸, 𝝈𝝈𝟐𝟐) to build the LSSVM model. 

Tuned  Parameters 

𝛄𝛄* 𝛔𝛔𝟐𝟐 

3.1392 1.5982 

 

6.3. Evaluation of Model Performance 
   Assessment the accuracy of the prediction 
model is the last and most important step in 
the modeling process. In this work, 
quantitative analysis is used to evaluate the 
model performance. Therefore, correlation 
coefficient (R2), absolute relative error 
(ARE) and root mean square error (RMSE) 
are used for quantitative analysis. ARE 
shows closeness of the simulated data with 
the actual data. ARE is defined as: 

𝐀𝐀𝐀𝐀𝐀𝐀 = |𝐲𝐲𝐢𝐢−�̂�𝐲𝐢𝐢
𝐲𝐲𝐢𝐢

|                                           (17)                                                                                                                                

   Where, 𝐲𝐲𝐢𝐢 is an actual data and �̂�𝐲𝐢𝐢 is a 
forecasted value obtained by proxy model. 
𝐀𝐀𝟐𝟐 provides a value that represents the 
amount of success in reducing the standard 
deviation by regression analysis. 𝐀𝐀𝟐𝟐  is 
defined as: 

R2 = 1 − ∑(yi−ŷi)2
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7. Results  

Table 7. LSSVM performance.

Sample RMSE ARE R2

Training Data 25.639 0.7302 0.9491
Validation Data 27.8243 0.8691 0.9392

Testing Data 30.275 0.9326 0.9363

Figs. 8, 9 and 10 illustrate difference between 
the real and the simulated LSSVM output, for train-
ing, validation and testing sets, respectively.

   The 480 sets of data were provided as 
input files to run in full simulation model by 
LHS. The convergence of reservoir 
simulation model was obtained in 270 of 480 
data sets. These 270 data sets as input 
parameters are used to build the proxy 
model. 70%, 15% and 15% of these input 
dataset are defined as training, validation 
and testing sets, respectively. To construct 
the proxy, 230 cases of the numerical 
simulation model were made and used for 
the training of the proxy model. 40 cases are 
selected randomly among the training cases 
and used to validate the proxy model. 40 
cases were also made and used for the 
testing of the proxy model. The datasets of 
these cases are different from the datasets of 
training cases. Table 7 shows the 
performance of constructed LSSVM proxy 
model.  

Table 7: LSSVM performance. 
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For history matching, the proxy model 
output should be minimized by the 
optimization algorithms. In fact, 
optimization algorithms choose a set of input 
parameters in which the objective function is 
minimum i.e. the simulation model is history 
matched.  

Prior to optimization, sensitivity of final 
objective function to each input parameter is 
evaluated. Figs. 11-23 show the sensitivity 
of final objective function to each input 
parameter. In these figures, the sensitivity of 
the matching parameters to final objective 
function are shown separately because the 
new range of the matching parameters (min, 
max) should be determine  in which the final 
objective function is minimal.  
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Training Data 25.639 0.7302 0.9491 
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Figure 8: Training Datasets in LSSVM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Validation Datasets in 
LSSVM 
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Figure 10: Testing Datasets in LSSVM 
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Figure 9. : Validation Datasets in LSSVM.

Figure 10. Testing Datasets in LSSVM.
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For history matching, the proxy model output 
should be minimized by the optimization algo-
rithms. In fact, optimization algorithms choose 
a set of input parameters in which the objective 
function is minimum i.e. the simulation model is 
history matched. 

Prior to optimization, sensitivity of final objec-
tive function to each input parameter is evaluated. 
Figs. 11-23 show the sensitivity of final objective 
function to each input parameter. In these figures, 
the sensitivity of the matching parameters to final 
objective function are shown separately because 
the new range of the matching parameters (min, 
max) should be determine  in which the final ob-
jective function is minimal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Average  Final Output Sensitivity to Aquifer Compressibility in LSSVM Model. 

 

Figure 12: Average Final Output Sensitivity to Aquifer Height in LSSVM Model. 

 

Figure 13: Average Final Output Sensitivity to Aquifer Permeability in LSSVM Model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Average  Final Output Sensitivity to Aquifer Compressibility in LSSVM Model. 

 

Figure 12: Average Final Output Sensitivity to Aquifer Height in LSSVM Model. 

 

Figure 13: Average Final Output Sensitivity to Aquifer Permeability in LSSVM Model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Average  Final Output Sensitivity to Aquifer Compressibility in LSSVM Model. 

 

Figure 12: Average Final Output Sensitivity to Aquifer Height in LSSVM Model. 

 

Figure 13: Average Final Output Sensitivity to Aquifer Permeability in LSSVM Model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Average Final Output Sensitivity to Aquifer Porosity in LSSVM Model. 

 

Figure 15: Average Final Output Sensitivity to Aquifer Raduis in LSSVM Model 

 

Figure 16: Average Final Output Sensitivity to Vertical dimension of matrix in LSSVM Model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Average Final Output Sensitivity to Aquifer Porosity in LSSVM Model. 

 

Figure 15: Average Final Output Sensitivity to Aquifer Raduis in LSSVM Model 

 

Figure 16: Average Final Output Sensitivity to Vertical dimension of matrix in LSSVM Model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Average Final Output Sensitivity to Aquifer Porosity in LSSVM Model. 

 

Figure 15: Average Final Output Sensitivity to Aquifer Raduis in LSSVM Model 

 

Figure 16: Average Final Output Sensitivity to Vertical dimension of matrix in LSSVM Model. 

 

Figure 11. Average  Final Output Sensitivity to Aquifer Com-
pressibility in LSSVM Model.

Figure 12. Average Final Output Sensitivity to Aquifer 
Height in LSSVM Model.

Figure 13. Average Final Output Sensitivity to Aquifer Per-
meability in LSSVM Model.

Figure 14. Average Final Output Sensitivity to Aquifer Po-
rosity in LSSVM Model.

Figure 15. Average Final Output Sensitivity to Aquifer 
Raduis in LSSVM Model.

Figure 16. Average Final Output Sensitivity to Vertical di-
mension of matrix in LSSVM Model.

Figure 17. Average Final Output Sensitivity  Fracture Com-
pressibility in LSSVM Model.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure17: Average Final Output Sensitivity  Fracture Compressibility in LSSVM Model. 

 

Figure 18: Average Final Output Sensitivity to Fracture Permeability (x & y) in LSSVM 

Model. 

 

Figure 19: Average Final Output Sensitivity to Fracture Permeability (z) in LSSVM Model. 

 

The main purpose of history matching is to 
reach the minimum objective function. Therefore, 
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Figure17: Average Final Output Sensitivity  Fracture Compressibility in LSSVM Model. 

 

Figure 18: Average Final Output Sensitivity to Fracture Permeability (x & y) in LSSVM 

Model. 

 

Figure 19: Average Final Output Sensitivity to Fracture Permeability (z) in LSSVM Model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure17: Average Final Output Sensitivity  Fracture Compressibility in LSSVM Model. 

 

Figure 18: Average Final Output Sensitivity to Fracture Permeability (x & y) in LSSVM 

Model. 

 

Figure 19: Average Final Output Sensitivity to Fracture Permeability (z) in LSSVM Model. 

 

determining these ranges is useful to improve 
the history matching efficiency. Red dash lines in 
these figures show the modified range of input 
parameters in which the final objective function is 
minimal. Fig. 24 shows a comparison between the 
sensitivity of the final objective function to 13 pa-
rameters. Fracture permeability in x and y direc-
tion and pore volume multiplier as shown in Fig. 
24 have the greatest impact on the LSSVM model 
output. So, the modified range of these two param-
eters is more effective in minimizing the LSSVM 
model output. Table 8 shows the modified ranges 
of input data. 

Figure 18. Average Final Output Sensitivity to Fracture Per-
meability (x & y) in LSSVM Model.

Figure 19. Average Final Output Sensitivity to Fracture Per-
meability (z) in LSSVM Model.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: Average Final Output Sensitivity to Fracture Porosity in LSSVM Model. 

 

Figure 21: Average Final Output Sensitivity to Matrix Compressibility in LSSVM Model. 

 

Figure 22: Average Final Output Sensitivity to Pore volume multiplier in LSSVM Model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: Average Final Output Sensitivity to Fracture Porosity in LSSVM Model. 

 

Figure 21: Average Final Output Sensitivity to Matrix Compressibility in LSSVM Model. 

 

Figure 22: Average Final Output Sensitivity to Pore volume multiplier in LSSVM Model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: Average Final Output Sensitivity to Fracture Porosity in LSSVM Model. 

 

Figure 21: Average Final Output Sensitivity to Matrix Compressibility in LSSVM Model. 

 

Figure 22: Average Final Output Sensitivity to Pore volume multiplier in LSSVM Model. 

 

 

 

 

 

 

 

 

 

 

 

The main purpose of history matching is to 
reach the minimum objective function. 
Therefore, determining these ranges is useful 
to improve the history matching efficiency. 
Red dash lines in these figures show the 
modified range of input parameters in which 
the final objective function is minimal. Fig. 
24 shows a comparison between the 
sensitivity of the final objective function to 
13 parameters. Fracture permeability in x 
and y direction and pore volume multiplier 
as shown in Fig. 24 have the greatest impact 
on the LSSVM model output. So, the 
modified range of these two parameters is 
more effective in minimizing the LSSVM 
model output. Table 8 shows the modified 
ranges of input data.  

 Next step is to apply the modified ranges in 
two optimization algorithms (ICA and PSO). 
These two algorithms have some adjustable 
parameters as mentioned before. These 
parameters are used to tune the optimization 
process.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   The main tuning parameters of the PSO 
model are C1, C2 and the swarm size. The 
settings of these parameters determine how 
it optimizes the search-space. According to 
the type of problem, these tuning parameters 
should be changed. Therefore, the proper 
tuning parameters value is needed to be get. 
The way to solve this problem is by trial and 
error. In this work, 15 alterations to the PSO 
were investigated and their performance 
(mean square error) determined. Due to the 
high number of matching parameters (13 
parameters), PSO requires a high number of 
particles (3000, 4000 and 5000) to improve 
its performance. 

Table 8: Modified range of input parameters in 

LSSVM model. 

Parameters Modified Range 

Aquifer Porosity 0.04 - 0.0625 

Aquifer Permeability (md) 200 - 1400 

Aquifer Raduis (ft) 1.8× 104 -  2.4× 104 

Aquifer Height (ft) 750 - 1900 

Aquifer Compressibility (𝐩𝐩𝐩𝐩𝐩𝐩−𝟏𝟏) 1.75× 10−4 – 2.5× 10−4 

Matrix Compressibility (𝐩𝐩𝐩𝐩𝐩𝐩−𝟏𝟏) 6× 10−6 - 11× 10−6 

Fracture Compressibility (𝐩𝐩𝐩𝐩𝐩𝐩−𝟏𝟏) 1.5× 10−4 - 1.75× 10−4 

Shape factor (ft-2) 0.005 - 0.04 

Matrix block height (ft) 50 - 90 

Pore volume multiplier 0.25 - 0.75 

Fracture Permeability (z) (md) 200 - 400 

Fracture Permeability (x & y) (md) 100 - 400 

Fracture Porosity 0.0025 - 0.0065 

 

Figure 23: Average Final Output Sensitivity to Shape Factor in LSSVM Model. 

 
Figure 20. Average Final Output Sensitivity to Fracture Po-
rosity in LSSVM Model.

Figure 21. Average Final Output Sensitivity to Matrix Com-
pressibility in LSSVM Model.

Figure 22. Average Final Output Sensitivity to Pore volume 
multiplier in LSSVM Model.

Figure 23. Average Final Output Sensitivity to Shape Fac-
tor in LSSVM Model.

Next step is to apply the modified ranges in two 
optimization algorithms (ICA and PSO). These two 
algorithms have some adjustable parameters as 
mentioned before. These parameters are used to 
tune the optimization process. 

The main tuning parameters of the PSO model 
are C1, C2 and the swarm size. The settings of these 
parameters determine how it optimizes the search-
space. According to the type of problem, these tun-
ing parameters should be changed. Therefore, the 
proper tuning parameters value is needed to be get. 
The way to solve this problem is by trial and error. 
In this work, 15 alterations to the PSO were inves-
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tigated and their performance (mean square error) 
determined. Due to the high number of matching 
parameters (13 parameters), PSO requires a high 
number of particles (3000, 4000 and 5000) to im-
prove its performance.

Fig. 25 shows impact of the tuning parameters 
on performance of the PSO. 

It is observed that there is a slight improve-
ment of performance of the PSO with increasing 
swarm size; a larger swarm increases the number 
of calculations to converge to an error limit. The 
research presented in this paper found out that 
setting the two weight factors C1 and C2 at 1.5 and 
2.5, respectively provides the best performance 
of the PSO for all runs. Other combinations of val-
ues lead to lower performance of the PSO. Table 9 
shows performance of the alterations to the PSO.

It is clear that the performance of the ICA is 
affected by tuning parameters such as number of 
countries, revolution rate, assimilation coefficient 
(β) and assimilation angle coefficient (γ). So, good 
values for the tuning parameters were obtained 
by trial and error. To investigate the effect of the 
population size on the performance of the ICA the 
number of countries was selected from the set {50, 
70, 90, 100, 120, 150, 170 and 200} and then ex-
ecuted ICA. Fig. 26 shows the results. Increasing 
the number of countries reduces MSE. 

MSE decreased rapidly for up to 100 countries. 
So, 100 countries have been used in this work. 
Based on previous studies on a number of optimi-

Parameters Modified Range
Aquifer Porosity 0.04 – 0.0625

Aquifer Permeability (md) 200 – 1400
Aquifer Raduis (ft) 1.8×104 –  2.4×104

Aquifer Height (ft) 750 - 1900
Aquifer Compressibility (psi-1) 1.75×10-4 – 2.5×10-4

Matrix Compressibility (psi-1) 6×10-6 – 11×10-6

Fracture Compressibility (psi-1) 1.5×10-4 – 1.75×10-4

Shape factor (ft-2) 0.005 – 0.04
Matrix block height (ft) 50 – 90
Pore volume multiplier 0.25 – 0.75

Fracture Permeability (z) (md) 200 – 400
Fracture Permeability (x & y) 

(md) 100 – 400

Fracture Porosity 0.0025 – 0.0065

Table 8. Modified range of input parameters in LSSVM 
model.
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Figure 24: The Sensitivity of the LSSVM Model Output to each Input Argument 
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mance of the ICA.
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Figure 24: The Sensitivity of the LSSVM Model Output to each Input Argument 

 

zation problems [29, 33 and 34], the best range of 
variation is 0.1-0.2 for the revolution rate, 0.5-2.5 
for  β and 0.3-1 (radian) for γ. In this paper, many 
tests are executed by changing the range of varia-
tion for these parameters (the revolution rate be-
tween 0.1-0.2,  β between 0.5-2.5 and γ from 0.3-
1 radian). Table 10 shows the results of some of 
these tests. The best performance of ICA (the low-
est MSE) occurred in the revolution rate=0.1, β=2 
and γ=0.5. 
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Table 11 shows the best performance of opti-
mization algorithms to minimize the LSSVM model 
output (final objective function).

MSE shown in Table 11 indicates the minimum 
value of the LSSVM model output obtained by the 
optimization algorithms. According to the achieved 
MSE, PSO performance in minimization of the LSS-
VM model output is better than ICA. 
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Run # 1 0.2 0.5 0.3 143.356 Run # 11 0.11 0.7 0.4 141.236

Run # 2 0.2 2 0.7 142.965 Run # 12 0.2 2.3 0.8 143.754

Run # 3 0.12 1 0.5 142.780 Run # 13 0.14 1.7 0.5 139.987

Run # 4 0.1 2.5 0.5 141.324 Run # 14 0.15 1 0.5 140.327

Run # 5 0.1 2 0.5 139.721 Run # 15 0.1 1.5 0.4 143.540

Run # 6 0.2 2.5 0.4 140.013 Run # 16 0.15 2.5 0.3 141.783

Run # 7 0.1 2 1 140.732 Run # 17 0.18 2.5 1 143.481

Run # 8 0.2 1.5 0.4 140.12 Run # 18 0.16 1.5 0.4 141.331

Run # 9 0.15 2.3 0.5 139.823 Run # 19 0.2 1.3 0.5 142.471

Run # 10 0.2 2.5 0.6 140.654 Run # 20 0.1 2 0.7 139.908

Table 9. Performance of the PSO on LSSVM model.

Table 10. Performance of the ICA on LSSVM model.
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Run # 1 3000 1.5 2.5 113.132 Run # 8 4000 2 2 116.142

Run # 2 3000 1.7 2.3 115.223 Run # 9 4000                                                                                                                                   2.2 1.8 116.789

Run # 3 3000 2 2 116.754 Run # 10 4000 2.5 1.5 118.381

Run # 4 3000 2.2 1.8 117.121 Run # 11 5000 1.5 2.5 112.642

Run # 5 3000 2.5 1.5 119.587 Run # 12 5000 1.7 2.3 113.285

Run # 6 4000 1.5 2.5 112.802 Run # 13 5000 2 2 115.585

Run # 7 4000 1.7 2.3 113.937 Run # 14 5000 2.2 1.8 115.285

Run # 15 5000 2.5 1.5 117.285

Table 11. The best performance of the optimization algo-
rithms on LSSVM model.

Performance LSSVM+PSO LSSVM+ICA

MSE 112.642 139.729
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Table 12 shows the outputs of the optimization 
algorithms. These outputs are the matching pa-
rameters. Fig. 27 shows comparison of matching 
parameters obtained from the optimization algo-
rithms. Also, table 13 shows the CPU time for using 
the techniques described in this work.

In automatic history matching, sensitive analy-
sis is often performed on full simulation model. In 
this work, to get new range of the uncertain pa-
rameters (matching parameters) in which the ob-
jective function has a minimum value, sensitivity 
analysis is also performed on the proxy model.

By applying the modified ranges to the opti-
mization methods, optimization of the objective 
function will be faster and more accurate. So, out-
puts of the optimization methods (matching pa-

Table 12 shows the outputs of the 
optimization algorithms. These outputs are 
the matching parameters. Fig. 27 shows 
comparison of matching parameters obtained 
from the optimization algorithms. Also, table 
13 shows the CPU time for using the 
techniques described in this work. 
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analysis is often performed on full 
simulation model. In this work, to get new 
range of the uncertain parameters (matching 
parameters) in which the objective function 
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also performed on the proxy model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameters LSSVM+PSO LSSVM+ICA 
Aquifer Porosity 0.044502455 0.0499802 

Aquifer Permeability (md) 490.59655812 815.1510 
Aquifer Raduis (ft) 24734.9675 23740.975 
Aquifer Height (ft) 1438.803772 1886.7283 

Aquifer Compressibility (𝐩𝐩𝐩𝐩𝐩𝐩−𝟏𝟏) 0.000238368 0.0002408 
Matrix Compressibility (𝐩𝐩𝐩𝐩𝐩𝐩−𝟏𝟏) 9.582× 10−6 8.67× 10−6 

Fracture Compressibility (𝐩𝐩𝐩𝐩𝐩𝐩−𝟏𝟏) 0.000153298 0.000154381 
Shape factor (ft-2) 0.03266354 0.026635967 

Matrix block height (ft) 78.82779504 60.9488937 
Pore volume multiplier 0.709300894 0.699201758 

Fracture Permeability (z) (md) 213.5918638 362.0976531 
Fracture Permeability  (x & y) (md) 191.542375 436.8632893 

Fracture Porosity 0.006230512 0.005529285 

Figure 27: Comparison of matching parameters obtained from the optimization algorithms. 
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Figure 27. Comparison of matching parameters obtained 
from the optimization algorithms.

Table 12. Matching parameters achieved from the optimization algorithms.

Parameters LSSVM+PSO LSSVM+ICA
Aquifer Porosity 0.044502455 0.0499802

Aquifer Permeability (md) 490.59655812 815.1510
Aquifer Raduis (ft) 24734.9675 23740.975
Aquifer Height (ft) 1438.803772 1886.7283

Aquifer Compressibility (psi-1) 0.000238368 0.0002408
Matrix Compressibility (psi-1) 9.582×10-6 8.67×10-6

Fracture Compressibility (psi-1) 0.000153298 0.000154381
Shape factor (ft-2) 0.03266354 0.026635967

Matrix block height (ft) 78.82779504 60.9488937
Pore volume multiplier 0.709300894 0.699201758

Fracture Permeability (z) (md) 213.5918638 362.0976531
Fracture Permeability  (x & y) (md) 191.542375 436.8632893

Fracture Porosity 0.006230512 0.005529285

Model Optimization 
technique

CPU time
(second)

LSSVM
(linear)

PSO 179

ICA 213

LSSVM
(radial)

PSO 78

ICA 92

LSSVM
(polynomial)

PSO 122

ICA 157

Table 13. Comparison of CPU time in different models.

rameters) are produced in less time and with high 
precision. 

Now matching parameters obtained by each of 
the optimization methods are applied in the res-
ervoir simulator. Simulator outputs which include 
oil, gas and water rates and well static pressure are 
compared with the real data. 

Figs. 28-32 show history matching between 
simulation data and real data achieved by two dif-
ferent methods. The base case  in these figures, 
states the simulation data before history matching 
operation. 

Table 14 shows the performance of the in-
vestigated optimization techniques in history 
matching. RMSE in this table expresses the dif-
ference between the actual data and simulation 
data. LSSVM+PSO has a better performance than 
LSSVM+ICA in the history matching process. 
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Figs. 28-32 show history matching between 
simulation data and real data achieved by 
two different methods. The base case  in 
these figures, states the simulation data 
before history matching operation.  

Table 14 shows the performance of the 
investigated optimization techniques in 
history matching. RMSE in this table 
expresses the difference between the actual 
data and simulation data. LSSVM+PSO has 
a better performance than LSSVM+ICA in 
the history matching process.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Model Optimization technique CPU time (second) 

LSSVM (linear) PSO 179 
ICA 213 

LSSVM (radial) PSO 78 
ICA 92 

LSSVM (polynomial) PSO 122 
ICA 157 

Figure 28: Gas Flow Rate vs Date (Field). 

Table 13: Comparison of CPU time in different models 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29: Oil Flow Rate vs Date (Field). 

 

Figure 30: Water Flow Rate vs Date (Field). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29: Oil Flow Rate vs Date (Field). 

 

Figure 30: Water Flow Rate vs Date (Field). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31: Static Pressure vs Date (Well # 1). 

 

Figure 32: Static Pressure vs Date (Well # 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31: Static Pressure vs Date (Well # 1). 

 

Figure 32: Static Pressure vs Date (Well # 6). 

 

Figure 28. Gas Flow Rate vs Date (Field).

Figure 29. Oil Flow Rate vs Date (Field).

Figure 30. Water Flow Rate vs Date (Field).

Figure 31. Static Pressure vs Date (Well # 1).

Figure 32. Static Pressure vs Date (Well # 6).

Figs. 28 and 29 show the gas rate and oil rate 
history matching at the field scale. In these figures, 
both proposed methods have provided acceptable 

match. Fig. 30 shows the water rate history match-
ing in the field scale. In this figure, lack of historical 
water rate data reduces the effectiveness of ICA in 
the water rate history matching. To investigate the 
static pressure history matching, two wells (Well 
#1 and Well #6) were selected from this reservoir 
randomly. Figs. 31 and 32 show the static pressure 
history matching in Well #1 and Well #6 respective-
ly. During production, pressure data registered by 
the well head gauges is often noisy [35]. The noise 
in the pressure data reduces the efficiency of the in-
vestigated optimization methods and proxy model.

8. Conclusions

After evaluating the results of previous section, the 
concluded items are as follow:
• Due to high speed and need for little data sets, 

LSSVM is the best tool to build a proxy model
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•  PSO as an optimization algorithm has a better 
performance than ICA. High- speed operation 
and small number of tuning parameters im-
prove the efficiency of PSO. 

• The population size has hardly any effect on the 
performance of the PSO method.

• By performing the sensitivity analysis on the 
proxy model, fracture permeability in x and y 
direction and pore volume multiplier are deter-

Nomenclature

ARE Absolute relative error md Millidarcy
Ave Average Obj Fcn Objective function
R2 Correlation coefficient OWC Oil water contact
DE Differential evolution PSO Particle swarm optimization

GOC Gas oil contact Perm Permeability
GA Genetic algorithm pbest Personal best position

gbest Global best position psi Pounds per square inch
ICA Imperialist competitive algorithm RMSE Root mean square error
IOIP Initial oil in place c1, c2 Self and Swarm confidence
LHS Latin hypercube sampling STB Stock tank barrel

LSSVM Least square support vector machine SVM Support vector machine

MSE Mean square error tDay Time in Day

mined as the most important matching param-
eters in the history matching. These param-
eters have the greatest impact on the oil, gas, 
water rates and the static pressure.

• The LSSVM as a proxy model reduces the num-
ber of required runs to history matching. It also 
increases the speed, precision and ease of the 
history matching process.

Greek symbols

γ Assimilation angle coefficient
β Assimilation coefficient
σ2 Kernel width parameter

αi*, αi Lagrangian multipliers
γ* Regularization parameter
Σ Shape factor

εi, εi* Slack variables
σ_i Standard  deviation

σ_i^2 Variance
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