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Abstract

Determination of optimum location for drilling a new well not only re-
quires engineering judgments but also consumes excessive computa-
tional time. Additionally, availability of many physical constraints such 
as the well length, trajectory, and completion type and the numerous 
affecting parameters including, well type, well numbers, well-control 
variables prompt that the optimization approaches become impera-
tive. The aim of this study is to figure out optimum well location and 
the best completion condition using coupled simulation optimization 
on an Iranian oil field located in southwest of Iran. The well place-
ment scenarios are considered in two successive time intervals during 
of the field life, i.e., exploration and infill drilling phase. In the former 
scenario, the well-placement optimization is considered to locate the 
drilling site of a wildcat well, while the later scenario includes the op-
timum drilling location of a well is determined after 10-years primary 
production of nine production wells. In each scenario, two stochastic 
optimization algorithms namely particle swarm optimization, and ar-
tificial bee colony will be applied to evaluate the considered objective 
function. The net present value to drill production wells through the 
field life is considered as an objective function during our simulation-
optimization approach. Our results show that the outcome of two 
population-based algorithms (i.e., particle swarm optimization and 
artificial bee colony) is marginally different from each other. The net 
present value of the infill drilling phase attains higher value using arti-
ficial bee colony algorithm.
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1. Introduction 
ncreasing oil production as well as minimizing 
production costs at the same time is a chal-
lenging task, which has been one of the top 

priorities in the petroleum industry over recent 
decades. Computational methods provide a re-
markable understanding of reservoir perfor-
mance, which decreases calculation time. One of 
the most significant fields in numeral simulation 
is to evaluate the well placements. well placement 
optimization problem applies a numerical tech-
nique such as a decision maker in order to shed 
light on so many physical constraints for instance 
the lengths of each well and completion types. 
Furthermore, well placement has had a profound 
impact on a field’s portfolio, as applying this 
method invariably facilitates the process of han-
dling numerous uncertainties. The aim of general 
well placement problem is to maximize an objec-
tive function like net present value (NPV) or re-
covery factor of accumulated production. 
Several investigations conducted regarding the 
well placement problem using different algo-
rithms. One of the first studies, which has been 
applied to examine the feasibility of all costs and 
profits during water flooding is based on NPV ob-
jective function which made by Pan [1]. However, 
no optimization algorithm has been implemented 
to reduce the computational task of the optimiza-
tion process in this study. There has been a grow-
ing interest in several studies locating on the op-
timal well location which associated with geologi-
cal complexities in a reservoir [2-4], Moreover, 
among optimization based methods, the gradient-
based ones have been considered in several 
studies which typically utilized to production op-
timization and closed loop management problems 
[5-10]. The well-known population-based algo-
rithms such as genetic algorithm (GA) and parti-
cle swarm optimization (PSO) has been taken into 
account in recent decades. GA has been used to 
optimize the variables including well type (e.g., 
producer or injector), well trajectory of a multi-
lateral well configuration, and well controls [11]. 
The application of heuristic optimization methods 
for  ground water management was investigated 
by Matott [12]. The gradient-based algorithms 
were implemented to optimize well numbers, lo-
cations, productions over a specified production 
phase by Wang and his co-workers [13]. In 2011, 
Onwunalu and Durlofsky presented a new well-
pattern optimization procedure applied on a 

large-scale field development. In their study, 
among several optimization techniques, PSO was 
selected as a well-pattern optimizer tool to locate 
an optimal well placement. The objective function 
in the mentioned study was NPV [14]. Later, ret-
rospective optimization method has been applied 
wherein a sub-problem consisting of a number of 
realizations was solved. Moreover, PSO and 
simplex linear interpolation were introduced as 
the main optimizers in that study. Besides, the 
number of realizations were selected by the k-
means clustering approach [15]. In 2013, a new 
approach, called partial separability, which is 
based on covariance-matrix-adaption evolution 
strategy, was built for each well instead of one 
metamodel including all wells. This algorithm 
shared some similarities with the ensemble-
based optimization approach [16]. Afterward, 
Forouzanfar and his collaborators proposed a 
novel algorithm wherein a joint-optimization al-
gorithm known as a covariance matrix adaptation 
evolution strategy was implemented to optimize 
well trajectories and controls [17]. Jesmani et al. 
conducted another study considering a well 
placement optimization subject in a field devel-
opment case with real constraints [18]. Subse-
quently, another study compared three metaheu-
ristics algorithms (i.e., PSO, GA, and Imperialist 
Competitive Algorithm, ICA) to maximize well 
productivities. As a result, they recommended 
that using tuned ICA was more beneficial than 
other optimization techniques [19]. Moreover, 
artificial bee colony (ABC) has been implemented 
to illustrate its efficiency in fractured reservoirs 
and deviated wells. The mentioned study revealed 
that ABC provided much better results than PSO  
[20]. In 2016, Rodrigues et al. discussed an inte-
grated optimization model for locating of oil wells 
and the size of offshore platform. In their study, 
linear optimization programming performed to 
minimize the development costs of a given oil 
field. The optimization variables are position and 
number of wells. Furthermore, the interaction 
between platforms such as capacities of produc-
tion platforms and location of each oil well were 
of particular interest [21]. Arnold et al. applied a 
combination of metric-based approach and multi-
objective optimization using PSO algorithm and 
Bayesian estimation of uncertainty to assess res-
ervoir production forecasts for a fractured reser-
voir [22]. Well placement, control, and joint opti-
mization not only attract more attentions, but 
also it becomes a necessity in field development 
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to optimize the most rewarding solution. In 2016, 
a study put emphasis on well controls and well 
placement problem in which several optimization 
algorithms has been compared including multi-
level coordinate search, general pattern search, 
PSO, and covariance matrix adaptive evolutionary 
strategy [23]. In 2017, a new approach to 
maximize net present value with respect to eco-
nomic project life well control variables conduct-
ed. The study consisted of two integrated loops. 
One was inner loop containing optimization 
method known as an adjoint-gradient based ap-
proach to optimized water flooding project, while 
another loop, which was called outer loop, ap-
plied an interpolation technique for production 
optimization purposes [24]. A stochastic simplex 
approximate gradient optimization method was 
applied to maximize an expected NPV value and 
simultaneously minimize the risk of minimum 
NPV value [25]. Moreover, a model-based well 
location optimization was proposed by Ramirez 
et al. This study suggested a robust approach by 
testing three optimization methods namely, a 
gradient-based optimization method, derivative 
free, and hybrid methods. Their  results showed 
that the hybrid method outperformed the other 
two methods [26]. Thimmisetty et al. put their 
effort on a strategy known as basis adaption 
which has been previously introduced for a de-
sign optimization problem presented to select a 
production well and injection well of a two-
dimensional oil reservoir with random permea-
bility. Under conditions of high uncertainty, au-
thors described the quantity of interest as a den-
sity objective function to evaluate probabilities of 
failure at a given designed point. Finally they con-
cluded that using a polynomial chaos-based was a 
novel approach to recognize a high confidence 
level at which cumulative oil production was high 
[27]. Inversitigation and optimization of second-
ary enhanced oil recovery methods also were of 
particularly interest, recently [28-30]. Zhang et al. 
proposed a study on performance of water- alter-
nating-gas (WAG) and steam –alternating- gas 
(SAG) process using ascending algorithm com-
bined with a simplex stochastic gradient algo-
rithm. They applied well spacing constraints in 
which distance between wells must not exceed 
the threshold value that was given by the optimi-
zation method. Well trajectories and controls sub-
ject to be optimized for both WAG and SAG simu-
lation examples. After considering different injec-
tion cycles, SAG flooding outperform WAG flood-

ing. The economic Analysis of life cycle of reser-
voir was measured by specifying NPV as the ob-
jective function. Results showed that SAG process 
achieved higher NPV compared to WAG tech-
nique[31]. In 2018, the rising of artificial intelli-
gence and emergence of machine learning pro-
vide new opportunities to countless optimization 
techniques [32-34]. The machine learning meth-
ods such as extreme gradient boosting, stochastic 
computational model, and different optimization 
methods like PSO and GA and deferential evolu-
tion were used to evaluate the reservoir response 
value like cumulative oil/ gas productions.  
The aim of this study is to find the optimum drill-
ing location of a new well using two evolutionary 
algorithms that are inspired from the social be-
havior of bird’s flock (i.e., PSO) and the swarm of 
bees (i.e., artificial bee colony, ABC).  These algo-
rithms are random based population where in 
looks through a global solution and avoids trap-
ping in a local optima point. Herein, we apply two 
optimization techniques for two production sce-
narios during reservoir life; the one is at the ex-
ploration phase and the other is at the infill-
drilling phase. In the former strategy, the opti-
mum drilling location of a vertical wild cat with 
the best completion layers is investigated consid-
ering the geological uncertainties and physical 
constraints in the overall field development prob-
lem. In the later strategy, known as infill drilling 
phase, subsequent to 10-year production from 9 
drilled wells, a single well will join the previous 
wells.  
The structure of this paper is as follow. The first 
section describes the optimization-simulation 
workflow implemented in our study. Afterward, 
two artificial algorithms used in this study will be 
introduced. Subsequently, our objective function 
and implemented scenarios will be discussed. 
Afterward, the case study from the Iranian for-
mation will be introduced. Our results and dis-
cussion of optimization algorithms will be de-
scribed in more details and it is followed by our 
conclusion. 
 

2. Model Description 
2.1. Optimization-simulation workflow 

The main heart of our research is to couple reser-
voir simulator to an optimizer code. In the litera-
ture, several studies highlighted the optimum 
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well-placement problem using coupled 
simulation-optimization approach for improved 
reservoir development [35-37]. The purpose of 
the implemented simulator, Eclipse 100, is speci-
fying the objective function value at a selected 
well location. The optimizer tries to use the simu-
lator as an objective function evaluator to find the 
coordination of the optimum well (i.e., Xw, Yw, co-
ordinates of the well) and/or simultaneously find-
ing the best completion layers (Zw1, Zw2). All codes 
are developed in MATLAB. As it is demonstrated 
in Fig. 1, our proposed approach starts by execut-
ing a command, which allows the reservoir simu-
lator to be run in the MATLAB domain. The opti-
mization process launches the simulator by pass-
ing a selected well location to its data file. At the 
next stage and after generating the results by the 
simulator, the code tries to search for the required 
data to calculate the objective function in the gen-
erated ASCII output file of the simulator. Fig. 1 
shows the details of these communications 
between our developed code in MATLAB and the 
implemented commercial simulator, Eclipse 100. 
 
2.2. Implemented optimization algorithms 

Two different heuristic approaches have been 
selected as optimization tools, PSO and ABC. Both 
these methods are considered as heuristic meth-
ods [38-43] 
 
2.2.1. Particle swarm optimization 

Particle swarm intelligence was introduced by 
Eberhart and Kennedy [44]. Its terminology is 
based on the foraging behavior of the swarm of 
birds. Each optimal solution is found by a random 
population generation ( {1,2,..., }i n , n is a num-
ber of populations) in the search space, which is 
being updated in each iteration. The potential so-
lutions are generated by the initial location, Xi, 
and velocity, Vi, of particles before the beginning 
of each iteration. Each particle keeps track of the 
coordinates in the problem space by following the 
best value of two parameters, ‘pBest’ and ‘gBest’. 
‘pBest’ is the currently feasible solution of the 
particle achieved so far, which is considered as 
the best solution (i.e., fitness). The optimum loca-
tion of each particle, which is obtained by the 
global best location of PSO, is called ‘gBest’. At 
each step, the new velocity is calculated based on 
other two properties that are known as accelera-

tion constants, c1 and c2 (Eq. 1) each devoted to 
local or global best solutions. The velocity equa-
tion is described by weighting the acceleration 
constants using random numbers. Each potential 
solution flights towards the best location in the 
search space (Eq.1). In the following equation, 
inertia (W) is another criterion, which plays a 
pivotal role to explore the global optima. The 
more generated inertia values, the higher perfor-
mance of the PSO convergence behavior is ex-
pected. The velocity of a particle iX  is given as 
follows where 1rand and 2rand  are random num-
bers between 0 and 1. These equations was a spe-
cial case of investigations conducted by  Eberhart 
and Kennedy [44]. 

1 21 1 2(pBest ) c (gBest )i i i i iiV w V c rand X rand X            
(1) 

After achieving the potential solution, the new 
location of particles is updated based on the best 
previous solution and a new velocity, 

1 1i i iX X V                                                                 (2) 
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Figure 1. Workflow of the implemented optimal well 
placement algorithm. During well placement and/or com-
pletion optimization the same workflow is implemented. 
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In this study, a robust and improved version of 
PSO known as modified PSO has been applied 
which is suggested by Zheng et al. [45] and Hu et 
al. [46]. In the modified PSO approach, a variable 
known as kz  is defined as randomized descend-
ing inertia weight which has a great importance 
when it is applied to the inertia term and it pre-
sented as follows: the performance of PSO algo-
rithm has been investigated by descending ran-
domized equation. kZ  is a matrix- vector expres-
sion and is given in Eq.3. kZ  is a randomized 
term. A is a determinant of matrices of w and . 

1 and 2 are interval which confined to (0.5, 2). 
P and gp are the best previous position of the 

thi  particle and best particle position in current 
system in the thk iteration. Subsequent equations 
based on Zheng et al. study are provided below, 

1
1 2

k k
gZ A Z p p    g g g                                  (3) 

4 (rand) (1 rand)kZ                                              (4) 
0.5 (Z ) 0.5 (rand)kw                                               (5) 

 

2.2.2. Artificial Bee Colony (ABC) 

ABC is another evolutionary optimization algo-
rithm attributed to Karaboga [47], which was in-
troduced based on the proposed model of Teresh-
ko and Loengarov [48]. This algorithm shares a 
common characteristic with PSO, but its termi-
nology is based on searching for rich food sources 
by honeybee colonies, in which onlookers, scouts, 
and employed bees are the key drivers in this na-
ture-based algorithm. Some control parameters, 
which need to be defined to initiate this algo-
rithm, are indicated in Table 1. 
 
Table 1. Description of control parameters in ABC algo-
rithm. 

Parameter Description 

NP Colony size; sum of employed 
bees and onlookers 

Food Number=NP/2 Equals the half of the colony 
Max cycle The number of cycles for forag-

ing 
D The number of parameters to 

be optimized 
 
Employed bees locate the available food source. 
These bees follow onlookers that look into the 

availability of food. When the food source is 
abandoned, employed bees act as scout bees and 
start to search for new food sources. This is one of 
the most remarkable characteristics of applying 
ABC. The potential solution is food number (Table 
1). The position of employed bees is being updat-
ed if the new coordination is better than the for-
mer position. In Eq. 6 ijv , ijx , and kjx  are the 
new, current position of employed bees, and a 
random position of each bee, respectively. j is a 
randomly chosen parameter and k is a randomly 
chosen solution. Employed bees try to find neigh-
bor food sources by using Eq. 6 which , in which 

ij  represents a random number between 0 and 
1. The equation below was suggested by Karabo-
ga [47]. 

( )ij ij ij ij kjv x x x                                           (6) 

 

2.2.3. Objective function  

As it was mentioned in Fig. 1, subsequent to the 
generation of simulation data, the objective func-
tion should be evaluated by our developed code. 
Among copious objective functions, recovery fac-
tor, net present value (NPV), and maximum oil 
production are much of interests in the petroleum 
literature [7, 16, 37, 49-54]. Among these func-
tions, since NPV attributes to capital revenues 
and expenditures is of particular interest [55, 56]. 
NPV is the differences between total revenue (e.g., 
oil production) and capital expenditure (e.g., ex-
cess water and gas treatment costs) over the pe-
riod of a field life. Achieving maximum NPV dur-
ing each scenario is the main goal. Thus, the NPV 
method can help us to decide the best optimiza-
tion scenario among available ones. NPV function 
includes various variables as follow: 

P
Q  repre-

sents as production value of phase P, pC  is the 
revenue of producer wells that is related to phase 
P. n  is equal to the period of simulation time (T) 
and 

dC  is an equation which calculates drilling 
cost of a given well. The parameters of NPV func-
tion implemented in our study are presented in 
Table 2. 

1

1
1

T
o oY

g g dn
n

w wn

Q C
f Q C C

i
Q C

                     

   
                        (7) 
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d well total dC N L C                                              (8) 
 

Table 2. Economic Parameters used during calculation of 
NPV function. 

Item Parameter Value 
Oil price (USD/bbl) Co 40 
Gas price (USD/MSCF) Cg 2 
Discount factor (%) i 15 
Excess water treatment 
costs (USD/bbl) Cw 0.5 
Drilling costs (USD/ft) Cd 800 

 
2.3. Optimization strategies and scenarios 

In our study, two different optimization strategies 
applied on two different scenarios (Fig. 2). Both 
optimization algorithms were examined in all 
cases. Fig. 3 depicts a schematic of all strategies 
and scenarios considered. The first strategy is 
well locating with full penetration completion in 
the formation under study (W#S1 in Fig. 3). In 
this optimization strategy, wells are completed in 
all layers of the formation irrespective of the 
amount of production of each layer. The second 
optimization strategy is searching for both opti-
mum well location and optimum completion 
(W#S2 in Fig. 3), i.e., the optimum layers for com-
pletion. Due to production from a combination of 
high and low permeable layers, it is imperative to 
locate the ideal completion, which would increase 
actual production and limit the excess water and 
gas treatment costs. Two different scenarios 
namely exploration and infill drilling phase were 
considered in each optimization strategy. In the 
exploration phase scenario (Fig. 3a), our algo-
rithm looks for the best location of a vertical 
wildcat well (i.e., an exploration well). In the oth-
er considered scenario, known as infill drilling 
(Fig. 3b), the main purpose is to keep producing 
from 9 available wells and to find the optimum 
location of the new well. Infill drilling as an effec-
tive solution applies when large numbers of wells 
are drilled to raise flow rate production in mature 
fields. 
 

Table 3. Reservoir Properties of the field under study. 

Parameter Value 
OOIP (STB) 5.35 × 108 

K* (md) 2186.37 
Average Gross Thickness (ft) 280 
* (%) 18 
Initial reservoir pressure (psi) 3500 

* represented as an average quantity. 

Optimization 
Strategies

Well Locating 
(completing in all layers)

Well Locating with 
optimum completion

Infill Drilling 
Scenario

Exploration 
Scenario

PSOABCABC PSO

Exploration 
Scenario

Exploration 
Scenario

ABC PSOPSOABC
 

Figure 2. Optimization strategies and scenarios conside-
red in this study for optimum well locating and optimum 
completion. 

 

 
Figure 3. Schematic of two scenarios, a) exploration b) 
infill drilling scenarios. In both figures, W#S1 is an output 
schematic of an optimization strategy in which the loca-
tion of the well with full penetration in the formation is 
considered. W#S2 shows the result of an optimization 
strategy wherein both location of the new well and its 
optimum completion are investigated. 

 

2.4. Description of case study 

The case study in which the optimization process 
has been carried out is a 3-D black oil model with 
the block centered grid system. The case study 
used is from one of the Iranian offshore fields, 
which is dominated by a distributive fluvial sys-
tem. The excellent reservoir sands of this field 
consist mainly of valley-fill deposition, where flu-
vial, coarse-grained sediment (with Darcy quali-
ty) accumulated in the upper and middle reaches 
of the incised valley system, while tidally-
influenced sediments accumulated in the marine-
influenced middle and lower reaches (Estuary). 
As a result of this aggradation, less fluvial-derived 
sediment reached the lower reaches of the valley 
system. Fig. 4 shows the permeability map of this 
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reservoir. Determining the optimum well place-
ment in this heterogeneous reservoir is a tough 
decision due to its geological complexity. A sector 
of the formation was selected for well-placement 
optimization that consists of 36 60 7   grids. The 
field has °API of 20. Table 3 summarizes the aver-
age properties of the reservoir. Moreover, the his-
togram of permeability is depicted in Fig. 5. As 
shown in this figure, the reservoir contains a di-
verse range of permeability from 0 to 12000 md. 
 

 
Figure 4. Permeability map of the field under the study. 
The fluvial geological system of the field is clear from this 
permeability map. 

 

 
Figure 5. Distribution of permeability of the reservoir 
under study in md. 

 

3. Results and Discussion 
In this section, the mentioned optimization strat-
egies in Fig. 2, was implemented on the case study 
dataset. In addition, we compared the NPV from 
both optimization algorithms (i.e., ABC and PSO) 
of all optimization strategies (i.e., well placement 
and well located with optimum completion de-
termination) during both scenarios (i.e., explora-
tion and infill drilling).  

3.1. Well locating with full penetration during 
exploration scenario 

The optimization algorithms were simultaneously 
applied to optimize well spatial coordination. The 
well control of the wildcat well was held fixed at 
the flow rate of 3000 bbl/day. The optimizer tries 
to find the optimum well position across the for-
mation area considering the physical boundary of 
the given field. Total production time of about 70 
years was considered. Each optimization algo-
rithm based on its methodology searches for the 
optimum condition and to compare them togeth-
er 50 iterations (i.e., function calls) was consid-
ered during optimizations. Fig.6 compares the 
performances of ABC and modified PSO algo-
rithms. The superiority of modified PSO to ABC in 
locating the optimal wild cat location is perfectly 
visible in Fig. 6. Although the NPV value calculat-
ed by PSO is slightly larger than that in ABC. PSO 
proves that based on its methodology, which is 
characterized by location and velocity of the best 
solution it is more robust than ABC at least in this 
case. Due to the ABC methodology that looks after 
the best food source, it could be able to find the 
optimum well location. The optimum location of 
the well was obtained at the grid cell of I=21 and 
J= 40 as shown in Fig. 7. 
 

 
Figure 6. Net present value versus number of simulation 
runs during PSO and ABC optimization in well locating 
with full penetration. 

 

3.2. Well locating with full penetration during 
infill drilling scenario 

In this case, which is known as the infill drilling 
scenario, the field was producing with nine previ-
ously drilled wells. In the previous studies, a few 
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number of wells in a synthetic model were exam-
ined [19, 50], while in this study, more wells at a 
larger scale on a real case study were analyzed. 
The main difference of this case with the previous 
section is that the target is locating the 10th opti-
mum well location after about 3700 days produc-
tion with 9 available wells. The oil production 
continues until the field recovery be constant. 
Total production time, in this case, is about 47 
years. All wells were producing with constant 
flow rate control with 900 bbl/day. More produc-
er wells bring more complexities; therefore, im-
plementing a robust and efficient algorithm can 
facilitate the optimization process. According to 
Fig.7, the highest NPV value for infill drilling 
phase was 101.80 10 USD, which was achieved by 
the ABC algorithm. The recovery factor which is 
obtained by this algorithm is about 11.8% (Table. 
4). The location of the new well and all previous 
nine wells are depicted in Fig. 8. The optimum 
well was found to be at I=9 and J=25. During the 
infill drilling, it is expected to locate wells in the 
formation where its oil has not produced yet (e.g., 
southeast of the formation and far from other 
wells) to increase sweep efficiency. Nevertheless, 
the location of this optimum well was considered 
near the previously drilled wells.  
Fig. 9 illustrates the location of this well, which is 
drilled just at the junction of two high permeable 
channels. This is why this location was considered 
as an optimum location as the more producible oil 
is recovered; the higher NPV value is expected.  
 

 
Figure 7. Permeability map of the formation showing the 
optimal location of the wild cat during the exploration 
scenario. The well location was optimized by PSO algo-
rithm. 

 
Figure 8. Illustration of optimum location of the new well 
(determined by an arrow) during infill drilling scenario on 
oil saturation map. Before infill drilling phase, 9 wells 
were under production. 

 

3.3. Locating well and finding optimum com-
pletion during exploration scenario 

In this strategy, unlike the former approach, the 
number of optimization parameters increases to 
four (i.e., I, J, K1, and K2). In the previous section, 
only the location of the well that was completed 
in all formation layers was considered (i.e., I, J). 
The production rates, duration, and well control 
parameters were considered as the previous 
strategy. 
As it can be seen from Fig. 10, PSO is more effi-
cient than ABC, which resulted in the NPV value of 
about 101.95 10  USD. The optimal variables were 
obtained as: [7; 32; 4; 7]. It means that the opti-
mum well location is at the grid of I=7 and J=32. 
In addition, the well should be completed from 
the 4th to the 7th layer. The length of the optimal 
completion is about 280 feet. 
There are two reasons for completing from the 4th 
layer and not from the shallower ones. First, as 
Fig. 11 shows, the 4th layer of the formation con-
sists of a high permeable layer. Completing a well 
in this layer can result in higher production and 
consequently higher recovery factor. Moreover, 
due to the formation of a secondary gas cap dur-
ing the infill drilling scenario, gas can break-
through in shallower completions. Thus, not 
completing the well in those layers can decrease 
gas breakthrough in the production wells.  
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Figure 9. Arial view of the fluvial channels in the 4th layer 
of the formation which naturally causes to produce more 
oil. 
 

 
Figure 10. Optimization advancement during optimum 
completion strategy for both PSO and ABC algorithms. 
 

 
Figure 11. Map of permeability of the 4th layer of the res-
ervoir under study showing by an arrow. The optimum 
location of the exploration phase has been determined 
across a channel and the optimum completion was select-
ed in a layer (i.e., 4th layer) in which the channel is located. 

3.4. Locating well and finding optimum com-
pletion during infill-drilling scenario 

Subsequent to the well locating in the exploration 
scenario, the infill-drilling scenario needs to be 
evaluated. All initial condition, as well as well-
control modes, were similar to the infill drilling in 
the first optimization strategy.  
As shown in Table 4 and Table 5, the total field 
production rates are compared by applying two 
optimization strategies. It is evident that while 
the field productions costs i.e., total gas produc-
tion and overall water production increase, the oil 
production will be decreased. Consequently, the 
NPV value becomes less and less. The ABC algo-
rithm was capable of finding the best solution 
with the NPV value of 102.04 10 USD. The opti-
mum well was obtained at the location of I=30 
and J=8 and completion layer of 3. Additionally, 
recovery factor and total field oil production were 
13.05% and 47.88 10  bbl/day, respectively. The 
recovery factor of both strategies specifically infill 
drilling scenario has been shown in Table 5. Dis-
crepancies drastically starts when optimum com-
pletion strategy has been applied. According to 
this figure, ABC clearly outperformed PSO in 
terms of recovery factor increasing. The reason 
behind this rising is that the best places which are 
abundant with probable oil production that has 
not been produced yet can be easily located by 
implementing ABC. As can be seen from Table 5 
ABC can increase the recovery factor of about 8% 
greater than the PSO method using optimum 
completion strategy and 3.8% using full penetra-
tion strategy. It is evident that the infill drilling 
scenario has a great influence on increasing the 
production performance. 
Fig. 12 depicts the optimum location of the well. 
As it is clear, the well location is selected far from 
previously drilled wells to increase the sweep ef-
ficiency during production. In this situation, the 
intact oil can be produced and the recovery factor 
increases. 
The overall calculation time for ABC algorithm 
was 147 minutes for the same number of itera-
tions; whereas PSO operative time was 180 
minutes which it took quite longer than ABC algo-
rithm elapsed time for infill drilling scenario. The 
simulations were run on a Core i7® 3.2 GHz CPU.  
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Figure 12. Optimum location of well (showing by an ar-
row) during infill drilling scenario on the oil saturation 
map. The optimum location of the well has been deter-
mined where its oil has not been produced yet. 

 

4. Conclusion 
In this study, a general well placement optimiza-
tion problem was investigated by utilizing two 
evolutionary algorithms to locate and place opti-
mal well placement. Optimization parameters of 

the first strategy are well spatial coordinations 
while model parameters of the other scenario all 
are the same as first one except that the best layer 
which completed into reservoir formations. After 
performing several numerical simulations, the 
results and analyses of those two evolutionary 
algorithm are summarized as follows: 
In infill drilling scenario, Overall calculation time 
for ABC algorithm was much more than PSO algo-
rithm. Among all investigated scenarios and opti-
mization strategies, ABC was more successful to 
achieve better results for locating optimum com-
pletion, and location during infill drilling scenario. 
Otherwise, modified PSO gained the better results 
in case of full penetration strategy specifically over 
the exploration scenario. As mentioned earlier, the 
x and y location of a well of the reservoir block 
were assumed to be variable, and depth parameter 
was assumed to be constant over the full penetra-
tion strategy. 
It was evident that high permeable layers of the 
reservoir are best decision to locate optimal well 
due to more oil which can be extracted from 
them. 
Infill drilling scenario and specifically optimum, 
completion strategy has great importance since it 
can contribute to producing more probable and 
untapped oil from the reservoir. 

 
  

Table 4. Comparison between the results of the full penetration strategy calculated by both algorithms. 

Optimizer and Well Num-
ber NPV ($) FOE (%) FGPT 

(USD/MSCF) 
FOPT 
(USD/bbl) 

FWPT 
(USD/bbl) 

ABC 1 Well 1.94E+10 12.91% 4.92E+04 7.73E+04 1.73E+05 
PSO 1 Well 1.95E+10 12.91% 4.21E+04 7.73E+04 1.74E+05 
ABC 10 wells 1.80E+10 11.78% 6.36E+04 7.12E+04 1.64E+05 
PSO 10 Wells 1.73E+10 11.35% 6.39E+04 6.86E+04 1.45E+05 

 

 

Table 5. Results of total production obtaining by optimum completion strategy using both algorithms. 

Optimizer and Well 
Number 

NPV 
 ($) 

FOE 
(%) FGPT (USD/MSCF) FOPT 

(USD/bbl) 
FWPT 
(USD/bbl) 

ABC 1 well 1.99E+10 12.97% 6.32E+04 7.83E+04 1.82E+05 
PSO 1 well 1.99E+10 12.91% 2.10E+04 7.73E+04 1.13E+05 
ABC 10 wells 2.04E+10 13.05% 6.31E+04 7.88E+04 1.64E+05 
PSO 10 wells 1.86E+10 12.10% 6.33E+04 7.31E+04 1.70E+05 
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