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Abstract  
In the present work, a framework is developed for implementation of 

finite difference schemes on Graphic Processing Units (GPU). The 

framework is developed using the CUDA language and C++ template 

meta-programming techniques. The framework is also applicable for 

other numerical methods which can be represented similar to finite 

difference schemes such as finite volume methods on structured 

grids. The framework supports both linear and nonlinear finite 

difference stencils. Furthermore, the arithmetic operators and math 

functions are overloaded to ease the array-based computations on 

GPUs. The reduction algorithms are also efficiently included in the 

framework. The discharge process of a lead-acid battery cell is 

simulated using the facilities provided by the framework. The 

governing equations are unsteady and include two nonlinear diffusion 

equations for solid (electrode) and liquid (electrolyte) potentials and 

three transient equations for acid concentration, porosity and the state 

of charge. The equations are discretized using the finite volume 

method. The framework allows the user to develop the numerical 

solver with a few efforts. The numerical simulation results are 

reported for different relations for open circuit potential and the 

electrolyte diffusion coefficient. 
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Introduction 

Using Graphics Processing Units (GPU) for numerical simulations has become popular in the 

scientific and engineering areas. Nowadays, high-end GPUs have several thousand computing 

cores that means they can simultaneously compute several thousand mathematical operations. 

The CUDA language is the most popular programming language for parallel processing using 

GPUs. However, due to the more complex structure of parallel programming and less 

debugging facilities, the development of a GPU numerical simulation code is a time-consuming 

task. In the present study, we developed a framework for using finite-difference schemes on 

GPUs. The framework includes several classes for defining array objects, mathematical 

expressions and finite difference schemes on the GPU device. The framework also includes 
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several functions, which allows the user to easily implement loops for array computations. 

Another advantage of the present framework is that the reduction algorithms (i.e. computing 

the minimum, maximum or sum of the array elements) are efficiently implemented and the user 

can easily utilize them. It should be mentioned that the framework is also applicable for other 

numerical methods which can be represented similar to finite difference schemes such as finite 

volume methods on structured grids. 

Due to the complexity of batteries, modeling and simulation are useful tools to optimize and 

analyze behavior and a better understanding of physical phenomena. Simulating the discharge 

process is important which enables researchers to predict the voltage drop of the battery cell as 

a function of time. The developed framework is utilized to simulate the discharge process of a 

lead-acid battery cell on a GPU. The model consists of unsteady nonlinear one-dimensional 

diffusion equations, which discretized using the finite volume method. The equations model 

the dynamic behavior of acid concentration, the porosity of the electrodes and the state of charge 

(SoC) of the cell. At each time step, an iterative algorithm solves the nonlinear system of 

equations. The results are validated by the previous works and presented for different empirical 

relations for the open circuit potential and the electrolyte diffusion coefficient. 

Framework 

To utilize the GPU cores in CUDA, one must write a GPU device function (or simply a kernel). 

This means even for a simple arithmetic operation; the user must write a kernel. In the present 

framework, using the C++ templates meta-programming techniques [1-3], which also supported 

by CUDA 7.0 and later versions, and overloading the arithmetic operators and math functions, 

the compiler automatically produces the required kernels (hidden from the user). For instance, 

in the following code, three arrays are defined and allocated on GPU memory with a size of 

100 elements and then some operations are accomplished on: 
#include <iostream> 
#include <algorithm> 
#include "exprNew.h" 
#include "stencilExpr.h" 
#include "cuarr.hpp" 
#include "cuMakePatch.hpp" 
#include "Stencil.hpp" 
#include "Reduce.h" 
#include <cmath> 

 
using namespace std; 
 
int main(int argc, char *argv[]) 
{ 
 int N = 100; 
 
 cuarr<double> X; 
 cuarr<double> Y; 
 cuarr<double> T; 
  
 X.Alloc(N); 
 Y.Alloc(N); 
 T.Alloc(N); 
 
 X = 3.1415926;  
 Y = 2 * X; 
 T = sin(X + Y);    
 
 return 0; 
} 
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The files "exprNew.h", "stencilExpr.h", "cuarr.hpp", "cuMakePatch.hpp", "Stencil.hpp", and 

"Reduce.h" includes all the framework classes and functions definitions. In the above code, the 

three lines before “return 0” calculates some operations. The compiler produces and executes a 

kernel for each of the lines. As observed, the user writes a simple code and the compiler 

accomplishes the other time-consuming tasks. 

Finite Difference Schemes 

The framework provides two methods for defining finite difference operators. One is only 

suitable for linear schemes while the other method is suitable for both linear and nonlinear 

schemes.  

A suitable way to express a linear stencil is to express it by the pairs of the (non-zero) 

coefficients and the corresponding distance from the base index. For instance, the central 

scheme for the first derivative can be expressed as: 

1

2ℎ
𝑓𝑖+1 −

1

2ℎ
𝑓𝑖−1    →     (

1

2ℎ
, 1) (−

1

2ℎ
, −1) (1) 

The framework allows the user to define and apply this scheme as: 

Stencil1D<2> CentralSchemeStencil 
(1, 1/(2*h),-1, -1/(2*h)); 
 
FiniteDifferenceOperator<2> CentralScheme; 
 
CentralScheme.Set(CentralSchemeStencil); 
T = CentralScheme(X); 

However, this method is only applicable to linear schemes. The framework also allows for 

defining nonlinear schemes. For instance, the following relation, 

A𝐸 =
ΓiΓi+1

𝛽Γi+1 + (1 − 𝛽)Γi
×

2

𝑑𝑖+1 + 𝑑𝑖
 

𝛽 =
𝑑𝑖

𝑑𝑖+1 + 𝑑𝑖
 

(2) 

which appears in discretizing a diffusion equation using the finite volume method is defined 

(outside the main function) as: 

struct AE :public SpecificStencil<AE> 
{ 
__device__ static double apply(int I,    
              const cuarr<double>& G,  
  const cuarr<double>& D) 
 { 
  return 2*G[I]*G[I+1] /  (  
  G[I+1] + D[I+1]/(D[I+1]+D[I])*(G[I]-G[I+1])) / (D[I]+D[I+1]); 
 } 
}; 

and then can be simply used as 

 T = AE::D(X, Y); 
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During the compilation, the compiler uses this single line and produces a kernel function and 

passes the input arrays (X and Y) to it. The produced kernel includes a call to the function 

AE::apply. The kernel loops this function over the entire elements of the array T. 

Reduction Algorithms 

Finding the minimum and maximum of an array and also calculating the sum of the array 

elements are common tasks in numerical simulations. These functions, which are called 

reduction algorithms, require special techniques to be efficiently computed in parallel 

processing. Although CUDA atomic functions are provided for these tasks, they do not utilize 

the parallel capability of the GPU device for accelerating the computations. In addition, the 

atomic functions are not defined for all data types. In the framework, without using atomic 

functions, the reduction algorithms are implemented by exploiting the parallel capability of the 

GPU device and the user just calls these functions as below 

double diffMax = max(fabs(X-Y), N); 
double diffMin = min(fabs(X-Y), N); 
double sumT = sum(T, N); 

Governing Equations 

In this section, we present the equations govern the discharge process of a lead-acid battery cell. 

Fig. 1 shows a typical schematic of a lead-acid cell. The cell consists of the following regions: 

lead-grid collector at x = 0 which is at the center of the positive electrode; a positive electrode 

(PbO2); an electrolyte reservoir; a porous separator; a negative electrode (Pb), and finally a 

lead-grid collector at x = L located at the center of the negative electrode. The electrolyte 

reservoir is an ionic conductive medium, which transfers anions and cations between the two 

electrode matrices. The separator is a porous zone with two significant roles; firstly, it keeps 

cathode and anode apart as not to make a short circuit. Secondly, it is a porous zone allowing 

positive and negative ions to transfer easily. The two electrodes are made from a highly 

electronically conductive material with small pores filled by binary sulfuric acid, H2SO4 [4]. 

The model is a one-dimensional model of a battery cell discharge process. The details of the 

model can be found in [5,6]. The governing equations are as follows: 

(3) 
𝜕
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(𝜎eff

𝜕𝜙𝑠
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) = 𝐴𝑗 

(4) 
𝜕

𝜕𝑥
(𝑘eff

𝜕𝜙𝑙

𝜕𝑥
) +

𝜕

𝜕𝑥
(𝑘𝐷

eff
ln 𝑐

𝜕𝑥
) = −𝐴𝑗 

(5) 
𝜕𝜀𝑐

𝜕𝑡
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(6) 
𝜕𝜀

𝜕𝑡
= 𝑎1

𝐴𝑗

2𝐹
 

(7) 
𝜕𝑆𝑜𝐶

𝜕𝑡
= ±

𝐴𝑗

𝑄max
      {

+    PbO2  elextrode
−       Pb   elextrode

 

The field variables are given in Table 1. Eqs. 3 and 4 are of elliptic type which governs the 

conservation of charge in solid (the positive and negative electrodes) and electrolyte, 

respectively. Eqs. 5-7 give the time variation of the acid concentration c (multiplied by ε), the 

porosity ε and the state of charge (SoC), respectively. The different variables and constants, 

appeared in the equations, are as follows (in the cgs system of units): 

(8) 𝜎eff = 𝜎(1 − 𝜀)ex, 𝑘eff = 𝑘𝜀ex, 𝑘𝐷
eff = 𝑘𝐷𝜀ex 
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(9) k =c exp [1.1104 + (199.475 − 16097.781𝑐)𝑐 +
3916.95 − 99406𝑐 −

712860
𝑇

𝑇
] 

(10) 𝑘𝐷 =
𝑅𝑇𝑘

𝐹
(2𝑡+

0 − 1),    𝐹 = 96485.33289,    𝑅 = 8.314    𝑡+
0 = 0.72 

(11) 𝐴 = 𝐴max𝑆𝑜𝐶𝜉 ,    𝐴max = 100 

(12) 𝑗 = 𝑖0 (
𝑐

𝑐ref
)

𝛾

[exp (
𝛼𝑎𝐹

𝑅𝑇
𝜂) − exp (

−𝛼𝑐𝐹

𝑅𝑇
𝜂)],    𝛼𝑎 = 𝛼𝑐 = 0.5,    𝛾 = 1.5 

 
𝜂 = {

𝜙𝑠 − 𝜙𝑙 − Δ𝑈𝑃𝑏𝑂2
    PbO2  elextrode

𝜙𝑠 − 𝜙𝑙                           Pb   elextrode
 

 

Fig. 1. Schematic of a lead-acid battery cell, with courtesy of Ref. [4]. 

The open circuit potential (Δ𝑈PbO2
) and the electrolyte diffusion coefficient (D) depend on 

acid concentration. However, it is a common practice to assume constant values for these 

variables, especially for Δ𝑈PbO2
 [4-6]: 

(13) Δ𝑈PbO2
= 2.095,    𝐷 = 3.02 × 10−5 

here we also consider the following empirical relations [5,7]: 

(14) 𝐷 = (1.75 + 260𝑐) × 10−5exp (
2174

298.15
−

2174

𝑇
)  

(15) 

Δ𝑈PbO2
= 0.0336 log(𝑚)4 + 0.07377 log(𝑚)3 + 0.06355 log(𝑚)2 + 0.14751 log(𝑚)

+ 1.922 

𝑚 = 1.00322 × 103𝑐 + 3.55 × 104𝑐2 + 2.17 × 106𝑐3 + 2.06 × 108𝑐4 

The state of the battery and initial conditions are given in Table 2. The boundary conditions are 

as follows: 

(16) 
𝜕𝑐

𝜕𝑥
|𝑥=0,𝐿 = 0,    

𝜕𝜙𝑙

𝜕𝑥
|𝑥=0,𝐿,    𝜙𝑠(0) = 𝑉,     𝜙𝑠(𝐿) = 0 
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The battery cell undergoes a discharge process at an applied current density of I = 0.34 A 

cm-2. The cell voltage (V) in the left boundary condition is not known and must be determined 

in order that the applied current density (I) equals the determined value (0.34 A cm-2). The 

applied current density is computed by: 

(17) 
𝐼 = ∫ 𝐴𝑗𝑑𝑥

𝑃𝑏𝑜2

 

Table 1.  Field variables used in the governing equations of the battery 

Property Symbol 

Solid potential 𝜙𝑠 

Liquid potential 𝜙𝑒 

Acid concentration 𝑐 

Porosity 𝜀 

State of charge SoC 

Specific electroactive area 𝐴 

Transfer current density 𝑗 

Conductivity of solid 𝜎 

Conductivity of liquid 𝑘 

Diffusion conductivity of liquid 𝑘𝐷 

Electrolyte diffusion coefficient 𝐷 

Temperature 𝑇 

Table 2.  Initial conditions 

Property PbO2 Reservoir Separator Pb 

𝑐 0.0049 0.0049 0.0049 0.0049 
𝜀 0.53 1.0 0.73 0.53 

SoC 1.0 --- --- 1.0 
ex 1.5 1.0 3.53 1.5 

The equations are discretized using the finite volume method. At each time step, a value is 

guessed for V and then the discretized form of Eqs. 3 and 4 are solved using the Newton 

iteration technique. The guessed value of V is updated by the Secant method until the applied 

current density converges to the desired value and then the solution marches to the next time 

step using Eqs. 5-7. The time-marching continues until V drops below a cut-off voltage. Here, 

the cut-off voltage is 1.5 V 

Results and Discussion 

All the field variables (Table 1) are defined as array objects. Also, most of the relations are 

implemented by the provided classes in the framework. For instance, the transfer current density 

(j) is implemented as follows: 

struct TransferCurrentDensity : public MultiVarFun < TransferCurrentDensity > 
{ 
__device__ static double apply(double c, double eta, double T) 
 { 
 double res =  
 i0*pow(c / c_ref, gamma)* 
 ( 
 exp(alpha_a*cu_F*eta / (cu_R*T))  - 
 exp(-alpha_c*cu_F*eta / (cu_R*T)) 
 ); 
 return res; 
 } 
}; 
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A non-uniform grid is used for discretizing the geometry. The grid is clustered near the 

interface of the different regions. Eqs. 5-7 are integrated using the forward Euler method. Also, 

the discretized equations of the elliptic equations for the i-th volume can be written in the 

following general form [8]: 

(18) 𝑎𝑃𝜙𝑖 = 𝑎𝑊𝜙𝑖−1 + 𝑎𝐸𝜙𝑖+1 + 𝑆𝑢 
(19) 𝑎𝑃 = 𝑎𝑊 + 𝑎𝐸 + 𝑆𝑃     

𝑎𝐸 =
Γe

𝑥𝑖+1 − 𝑥𝑖
       𝑎𝑊 =

Γw

𝑥𝑖 − 𝑥𝑖−1
 

where xi is the position of the volume center and Γ is the diffusion coefficient (𝜎eff or 𝑘eff). The 

subscripts w and e indicate the left and right faces of the volume, respectively. The harmonic 

mean is used for approximating the diffusion coefficients (Γ) at the interface of two adjacent 

volumes: 

(20) 
Γ𝑒 =

ΓiΓi+1

𝛽Γi+1 − (1 − 𝛽)Γi
         

𝛽 =
𝑥𝑒 − 𝑥𝑖

𝑥𝑖+1 − 𝑥𝑖
 

which reduces the relation of 𝑎𝐸 into scheme (2). 

Fig. 2 shows the acid concentration at several times, using the empirical relations (Eqs. 14 

and 15). The decrease of the acid concentration in the positive electrode is faster than that of 

the other regions. Fig. 3 shows the cell voltage (V) during the discharge process. The simulation 

results corresponding to relations (13) are also validated by those of Gu et al [5]. The figure 

shows using a constant value for the open circuit potential (Δ𝑈PbO2
) significantly affects the 

rate of the voltage drop. On the contrary, using a constant value for the electrolyte diffusion 

coefficient (D) has a slight effect on the rate of the voltage drop. Therefore, while assuming a 

constant value for the electrolyte diffusion coefficient is a good approximation, this is not the 

case for the open circuit potential. 

 
Fig. 2. Acid concentration during discharge. 
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Fig. 3. Voltage of the cell during discharge 

Conclusions 

In the present work, the numerical simulation of a lead-acid battery cell was carried out using 

a GPU framework. The framework facilitated the GPU implementation of a finite difference 

(or structured finite volume) numerical simulation code using C++ meta-programming 

techniques. It was observed the arithmetic operators, math functions, linear and nonlinear 

schemes were used or defined without writing a GPU kernel. The simulations indicate while 

assuming a constant value for the electrolyte diffusion coefficient has a negligible effect on the 

rate of the voltage drop, assuming a constant value for the open circuit potential significantly 

affects this rate. 
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