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Abstract  
Bubble point pressure is an important parameter in equilibrium calculations of 

reservoir fluids and having other applications in reservoir engineering. In this work, 

an artificial neural network (ANN) and a least square support vector machine (LS-

SVM) have been used to predict the bubble point pressure of reservoir fluids. Also, 

the accuracy of the models have been compared to two-equation state-based 

models, i.e. SRK-EOS and PR-EOS and four empirical equations, i.e. Whitson, 

Standing, Wilson and Ghafoori et al. Compared to the experimental data, the 

average relative deviations (ARD) of bubble pressure prediction for these equations 

were obtained to be 14%, 29%, 66%, 30%, 38%, and 11%, respectively. The best 

semi-empirical equation has an ARD of about 11% while, the ANN and LS-SVM 

models have an ARD of 8% and 4.68%, respectively. Thus, it can be concluded that 

generally, these soft computing models appear to be more accurate than the 

empirical and EOS based methods for prediction of bubble point pressure of 

reservoir fluids.   
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Introduction 

One of the most important parameters in equilibrium calculations of reservoir fluids is bubble 

point pressure. Bubble point pressure values are widely used in reservoir engineering 

calculations such as reservoir simulation, separator condition design, obtaining the optimum 

production rate, future performance prediction and material balance calculations of reservoir 

fluids. The accuracy of these calculations strongly depends on the accuracy of bubble point 

pressure measurements. Bubble point pressure is defined as the pressure at which the first gas 

bubble comes out of  liquid phase at a constant temperature. The most important method used 

to calculate bubble point pressure is using the K-values predicted based on an empirical relation 

or equation of states. K-value is defined by the following equation [1]: 

𝐾𝑖 =
𝑦𝑖
𝑥𝑖

 (1) 

where, yi and xi are the mole fractions of component i in the vapor and liquid phases, 

respectively. Although pressure-volume-temperature (PVT) experiments for K values 

calculations provide reliable results, they are very time-consuming and expensive. Thus, many 

researchers try to find fast and accurate ways for forecasting the bubble point pressure such as 

the development of different empirical relations for K-values prediction [2-4]. Although 

empirical equations are rapid paths for K-values calculations, the coefficients of these 
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equations usually obtained from the least square method using experimental data and are 

specific for each component. In the present work, an artificial neural network (ANN) and least 

square support vector machines (LS-SVMs) has been used for bubble pressure prediction of 

reservoir fluids. The result showed the average relative deviations (ARD) of these methods are 

less than classic methods.  

Theory 

Empirical Correlations 

Wilson [5] developed  a correlation to estimate the K-value as a function of critical pressure, 

temperature, and acentric factor as follows: 

𝐾𝑖 =
𝑃𝑐𝑖
𝑃
𝑒𝑥𝑝[5.37(1 + 𝜔𝑖)(1 − 𝑇𝑅𝑖

−1)] (2) 

where Pci is the critical pressure of component i, TRi is the reduced temperature of component i 

and P is the system pressure. 

Standing [6] proposed the following  relation for the calculation of  K-value: 

𝑙𝑛𝐾𝑖𝑃 = 𝑎 + 𝑐 [𝑏𝑖 (
1

1.8
) (

1

𝑇𝑏𝑖
−
1

𝑇
)] (3) 

where a and c are functions of pressure and bi is defined as follows: 

𝑏𝑖 = 𝑙𝑜𝑔 (
𝑃𝑐𝑖

101353.5
) /[(

1

1.8
) (

1

𝑇𝑏𝑖
−

1

𝑇𝑐𝑖
)] (4) 

where, Pci, Tci, and Tbi are critical pressure, critical temperature and normal boiling point of 

component i, respectively. 

Whitson and Torp [7] presented a new equation using the convergence pressure (Pk): 

𝐾𝑖 = (
𝑃𝑐𝑖
𝑃𝑘
)
𝛼−1 𝑃𝑐𝑖

𝑃
𝑒𝑥𝑝[5.37𝛼(1 + 𝜔𝑖)(1 − 𝑇𝑅𝑖

−1)] (5) 

where Pk is the particular pressure that K-values of all components in a reservoir fluid converges 

to unity at this pressure. Also, α expressed as follows: 

𝛼 = 1 − (
𝑃𝑘
𝑃
)
0.7

 (6) 

In low pressures, α approaches to unity and Whitson equation (Eq. 5) is reduced to the 

Wilson equation (Eq. 2). Ghafoori et al. [8] introduced a new equation, which was a function 

of more common properties such as critical pressure, temperature, and acentric factor as 

follows: 

𝐾𝑖 = (
1

𝑃𝑟𝑖
) 𝑒𝑥𝑝[5.37𝛽(1 + 𝜔𝑖)(1 − 𝑇𝑅𝑖

−1)] (7) 

where Pri is the reduced pressure of component i, and β is obtained from the following equation: 

𝛽 = 1 − (
𝑃

𝑃𝑘
)
𝑇𝑅𝑚𝑖𝑥

 (8) 
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where TRmix is the reduced temperature of the mixture: 

𝑇𝑅𝑚𝑖𝑥 =
𝑇

𝑇𝑐𝑚𝑖𝑥
 (9) 

where TCmix is the critical temperature of the mixture and obtained from the following mixing 

rule: 

𝑇𝐶𝑚𝑖𝑥 =∑𝑍𝑖 𝑇𝐶𝑖 (10) 

where TCi and Zi are the critical temperature and mole fraction of component i. 

Least Square Support Vector Machine 

Support Vector Machines (SVMs) are a strong kernel based on the statistical learning theory 

(SLT) and the structural risk minimization (SRM) principle introduced by Vapnik [9]. SVMs 

recognize patterns, estimate function and also, solve the nonlinear problems via solving the 

quadratic programming (QP) [10]. LS-SVMs are an alternative formulation of the standard 

SVMs, which find the solution by solving a set of linear equations instead of a QP problem 

[11].  

The standard LS-SVM algorithm has been described as follows; Given a set of training data 

like this: 

{(𝑥1, 𝑦1). . . (𝑥𝑘, 𝑦𝑘)} ⊂ ℝ𝑁 × ℝ (11) 

The following regression model is constructed by using a nonlinear mapping function𝜑(𝑥), 
which maps the input data to a higher dimensional feature space: 

y =𝑤𝑇 . 𝜑(𝑥) + b   with w ∈ℝ𝑁, b ∈ℝ ,𝜑: ℝ𝑁 → ℝ𝑀, 𝑀 → ∞ (12) 

where w is the weight vector and b is the bias. When the least squares support vector is used as 

an approximation function, a new optimization problem is created in the case of SRM. The 

quadratic loss function is selected in LS-SVM. The optimization problem of LS-SVM is created 

as: 

Min J (w, e) =
1

2
𝑤𝑇 . 𝑤 +

1

2
𝛾 ∑ 𝑒𝑘

2𝑁
𝑘=1  (13) 

The constraint of these equations is: 

y =𝑤𝑇 . 𝜑(𝑥), + b+𝑒𝑘  k=1….N (14) 

𝛾 is the regularization parameter that balances the model’s complexity and the training error, 

and ek is the desired error. In order to solve the constrained optimization problem, a Lagrangian 

is constructed as: 

L (w, b, e,∝) = J (w, e) – ∑ ∝𝑘
𝑁
𝑘=1 {𝑤𝑇 . 𝜑(𝑥),+𝑏 + 𝑒𝑘 − 𝑦𝑘} (15) 

In this equation ∝𝑘 is Lagrange multipliers and called support value. The solution of the 

above equation can be obtained by partially differentiating with respect to each variable. 

𝜕𝐿

𝜕𝑤
=0 →w=∑ ∝𝑘

𝑁
𝑘=1 . 𝜑(𝑥𝑘) (16) 
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𝜕𝐿

𝜕𝑏
=0 →w=∑ ∝𝑘

𝑁
𝑘=1 =0 (17) 

𝜕𝐿

𝜕𝑒𝑘
=0 →∝𝑘=𝛾. 𝑒𝑘                                      k=1,…, N (18) 

𝜕𝐿

𝜕∝𝑘
=0 →𝑤𝑇 . 𝜑(𝑥),+𝑏 + 𝑒𝑘 − 𝑦𝑘 = 0     k=1,…,N (19) 

When the variable w and e is removed, the Karush-Kuhn-Tucker (KKT) system is obtained 

as: 

[
01×N 11×N
1N×1 Z + γ−1. I

] [
b
∝
]=[

0
y
] (20) 

With 

y= [𝑦1, … , 𝑦𝑁] (21) 

1= [1,… ,1] (22) 

0= [0,… ,0] (23) 

∝=[∝1, … , ∝𝑁]       (24)  

Z={𝑍𝑘𝑗|𝑘, 𝑗 = 1,… ,𝑁} ,𝑍𝑘𝑗 = 𝜑(𝑥𝑘)
𝑇 . 𝜑(𝑥𝑗) = 𝐾(𝑥𝑘, 𝑥𝑗)𝑗 = 1, … ,𝑁 (25)  

In the above equation 𝐾(𝑥𝑘, 𝑥𝑗)is the kernel function and must follow Mercer’s theory [12]. 

The common examples of kernel function are linear, polynomial, radial basis function (RBF) 

kernel and multi-layer perceptron (MLP). In the present work, the RBF kernel was selected as 

the kernel function (Eq. 26). 

𝐾(𝑥, 𝑥𝑘) = 𝑒𝑥𝑝(−
∥ 𝑥 − 𝑥𝑘 ∥

2

𝛿2
) (26) 

The LS-SVM regression model can be obtained as: 

y(x) =∑ ∝𝑘
𝑁
𝑘=1 . 𝐾(𝑥, 𝑥𝑘) + 𝑏 (27) 

where (b, α) is the solution to Eq.16. The general topology of the LS-SVM  model is presented 

in Fig. 1. 

   
       Fig. 1. The general topology of the LS-SVM model  

Genetic algorithm 

Genetic Algorithms (GA), to obtain a fast search and optimization technique, use the “survival 

of the fittest” principle of natural evolution with the genetic propagation of characteristics [13]. 

The most important aspect of a GA is that it determines many possible solutions simultaneously 
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and explores different regions in the desired space chosen by the user [14]. GA, uses a direct 

analogy to Darwinian natural selection and genetics in biological systems, is a promising 

alternative to conventional traditional methods. Based on the Darwinian principle of ‘survival 

of the fittest’, GA can obtain the optimal solution after a series of iterative computations. The 

search process is composed of artificial mutation, crossover, and selection [15]. The adjusting 

processes of GA include three steps: 

1. Chromosome design: in this step γ and δ2 coded to form the chromosome. The 

chromosome X was presented as X= {p1,p2} where p1and p2 are  and δ
2
 respectively 

in this work. 

2. Population generation: in this step randomly initialized a population of possible 

solutions is generated. 

3. Fitness study: in this step a fitness function is evaluated. In the present work, ARD of 

testing data was used as a fitness function. Steps of the GA learning algorithm are 

detailed in the literature [12].  

     These three steps generate a new population of possible solutions, which as compared to the 

previous population; usually lead to better at satisfying the optimization objective. The best-

obtained string after repeating the above-described loop forms the solution to the optimization 

problem [16,17]. Fig. 2 depicts the steps of a GA for tuning the parameters of our proposed LS-

SVM methods, which is defined above. 

 

 
Fig. 2. The overall procedure of tuning the parameters of LS-SVM with GA 

Artificial neural network  

Neurons are the main building blocks of neural networks. In an ANN a neuron sums the 

weighted inputs from several connections and then the output of neurons is produced by 

applying transfer function to the sum. There are many transfer functions but, the common 

transfer function is sigmoid and we used this transfer function. The sigmoid function can 

be expressed by the following equation: 
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𝜃𝑗 =
1

1 + 𝑒−𝜓𝑗
 (28) 

In Eq. 28 𝜓 is the sum of weighted inputs to each neuron and 𝜃 is the output of each neuron 

and 𝜓 can be calculated from Eq. 29. 

𝜓𝑗 = (∑𝑤𝑖𝑗

𝑛

𝑖=1

. 𝜃𝑖) + 𝑏𝑗 (29) 

In Eq. 29, 𝑤𝑖𝑗 denotes a connection between node j of interlayer l to node i of interlayer l-1, 

𝑏𝑗 is a bias term and n is the number of neurons in each layer. In any interlayer l and neuron j, 

input values integrate and generate𝜓𝑗. 

In order to minimize the difference between experimental data and the calculation of the 

neural network, the mentioned process repeats for the total number of training data. After 

training, validation of the neural network can be done by testing data. 

Numerous types of artificial neural networks exist such as MLP, RBF networks and recurrent 

neural networks (RNN). The type of network used in this work is the MLP network. MLP 

networks are one of the most popular and successful neural network architectures, which are 

suited to a wide range of applications such as prediction and process modeling [12,15,18]. 

Preparation Of Training Dataset 

Based on the results of published literature, the bubble pressure of reservoir fluids strongly 

depends on mole fractions of reservoir fluids components, the molecular weight of C7+, specific 

gravity of C7+ and temperature [9]. In this work, all data was divided into two parts (70% for 

training and 30% for testing). 

To prevent a larger number from overriding a smaller number, all data were normalized. 

Normalization can be done by several equations. In this work, data was scaled between [0.1-

0.9] by means of Eq. 30. 

(𝑆𝑐𝑎𝑙𝑒𝑑)𝑣𝑎𝑙𝑢𝑒 =
(𝐴𝑐𝑡𝑢𝑎𝑙)𝑣𝑎𝑙𝑢𝑒 −𝑚𝑖𝑛(𝐴𝑐𝑡𝑢𝑎𝑙𝑣𝑎𝑙𝑢𝑒)

𝑚𝑎𝑥(𝐴𝑐𝑡𝑢𝑎𝑙𝑣𝑎𝑙𝑢𝑒) −𝑚𝑖𝑛(𝐴𝑐𝑡𝑢𝑎𝑙𝑣𝑎𝑙𝑢𝑒)
∗ 0.8 + 0.1 (30) 

Table 1 introduces systems that are used in this work in order of bubble pressure prediction 

of reservoir fluids. 

Optimization Of LS-SVM Based On GA 

Accurate parameter (γ, δ2) setting plays a significant role in obtaining a proper LS-SVM 

regression model with high prediction accuracy. In present work, total available data are divided 

into two parts: training data (70% of data) and testing data (30 % of data) randomly and ARD 

of testing data is calculated by means of Eq. 31. 

ARD =
100

𝑁
× ∑ |

𝑦𝑒𝑥𝑝−𝑦𝑐𝑎𝑙

𝑦𝑒𝑥𝑝
|𝑁

𝑖=1  (31) 

RBF as a kernel function was used for LS-SVM. The objective is the minimization of ARD 

on the testing dataset.
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Table 1. The experimental composition and bubble pressure of reservoir fluid using in this article 
Ref. P T MWC7+ γC7+ C7+ C6 C5 C4 C3 C2 C1 H2S CO2 N2 No. 

[22] 33163988 375 182 0.8 12.03 1.85 2.04 3.31 5.15 8.28 66.83 0 0.27 0.24 1 

[23] 30750808 353 143 0.864 12.69 1.51 2.09 4.56 8.79 11.46 53.47 0 0.9 0.3 2 

[23] 30750808 353 173 0.836 16.92 1.51 2.09 4.56 8.79 11.46 53.47 0 0.9 0.3 3 

[23] 30750808 353 173 0.8364 16.92 1.51 2.09 4.56 8.79 11.46 53.47 0 0.9 0.3 4 

[22] 26889720 347 218 0.808 17.77 1.42 1.96 4.01 7.33 11.47 54.62 0 0.4 1.02 5 

[24] 21994412 394 181 0.8259 20.06 7.59 6.87 6.61 4.89 6.51 47.47 0 0 0 6 

[23] 34474000 361 191 0.836 20.13 1.84 1.96 2.78 5.03 7.38 60.88 0 0 0 7 

[25] 28654789 427 181 0.805 20.26 2.14 3 4.05 5.48 8.93 48.73 0 7.03 0.38 8 

[26] 32453824 388 271 0.823 21.27 1.53 1.95 3.21 5.72 8.57 54.26 0 3.14 0.35 9 

[26] 27627464 394 279 0.818 25.12 2.74 3.3 4.035 4.5 6.5 47.64 2.32 3.6 0.25 10 

[27] 31481657 364 265 0.833 27.05 2.17 2.38 3.07 4.83 6.57 51.54 0 1.49 0.9 11 

[28] 25779657 366 231 0.836 28 2 2.52 3.84 6.13 7.6 49.1 0 0.38 0.44 12 

[22] 22187466 389 214 0.884 28.29 2.34 2.82 4.57 7.24 10.46 43.13 0 1.1 0.06 13 

[19] 25028124 389 195 0.846 28.38 2.57 2.63 4.04 6.18 10.76 44.44 0 0.94 0.06 14 

[22] 22994158 389 198 0.848 29.01 3.19 2.89 4.82 7.07 11.07 41.05 0 0.85 0.05 15 

[22] 22297783 386 200 0.848 29.07 2.89 3.16 4.29 7.01 10.6 41.88 0.03 1.04 0.03 16 

[22] 21160141 389 208 0.85 29.08 2.43 3 4.5 7.52 10.82 41.64 0 0.97 0.03 17 

[26] 25903764 387 286 0.826 30.26 1.28 2.68 3.95 6.74 7.15 45.85 0 1.64 0.45 18 

[23] 18933121 386 200 0.837 30.43 3.56 3.78 6 8.85 9.33 36.47 0 1.03 0.55 19 

[23] 18933121 386 200 0.837 30.43 3.56 3.78 6 8.85 9.93 36.47 0 1.03 0.55 20 

[22] 21511776 389 202 0.845 31.34 2.51 2.62 4.44 6.64 10.72 40.91 0 0.78 0.04 21 

[22] 21925464 391 195 0.847 31.36 2.81 2.72 4.41 6.55 10.54 40.7 0 0.85 0.06 22 

[28] 19898393 371 210 0.845 31.42 2.83 3.64 5.45 8.2 7.74 40.48 0 0.44 0.41 23 

[28] 27448199 367 230 0.865 31.45 2.06 2.26 3.04 4.46 6.32 49.23 0 0.84 0.34 24 

[22] 21104983 391 197 0.932 31.53 2.75 3.09 4.47 7.18 10.37 39.68 0.3 0.89 0.01 25 

[22] 26476032 361 270 0.894 31.53 1.54 1.92 2.18 3.03 5.11 45.58 0 9.11 0 26 

[22] 11169576 328 199 0.743 32.43 2.55 4.41 7.32 11.87 10.41 31 0 0.01 0 27 

[28] 23400951 348 217 0.85 33 2.19 2.55 3.49 4.62 5.97 47.12 0 0.16 0.9 28 

[29] 1723700 342 251 0.8367 33.2 6.57 8.76 15.95 23.23 10.64 1.51 0 0.12 0.02 29 

[27] 18064376 378 218 0.852 33.29 4.33 2.85 5.37 6.95 9.67 36.47 0 0.91 0.16 30 

[22] 20815401 389 210 0.849 33.38 2.77 2.92 4.18 6.86 10.07 38.79 0.04 0.99 0.02 31 

[22] 22063360 367 200 0.848 33.69 0 2.66 4.12 5.95 8.89 41.33 0 3.03 0.33 32 

[28] 26200240 384 234 0.869 34.64 1.69 1.16 2.59 4.59 6.64 47.69 0 0.69 0.31 33 

[22] 17561056 394 213 0.841 34.97 4.1 5.23 5.07 6.24 6.72 35.21 0 2.35 0.11 34 

[22] 17561056 394 213 0.841 34.97 4.1 3.8 5.07 6.24 6.72 35.21 0 2.35 0.11 35 

[28] 18781435 388 230 0.855 35.15 3.04 5.018 5.48 7.82 7 34.93 0 2.11 0.67 36 

[26] 15506405 393 279 0.812 35.47 4.08 3.82 6.507 7.221 7.627 32.17 0 1.82 0.08 37 

[23] 11679791 328 252 0.843 35.97 4.05 3.82 8.4 10.48 7.16 28.4 0 0.08 1.64 38 

[6] 11776318 328 252 0.843 35.97 4.05 3.82 8.4 10.48 7.16 28.4 0 0.08 1.64 39 

[23] 11679791 328 252 0.843 35.97 4.05 1.6 8.4 10.48 7.16 28.4 0 0.08 1.64 40 

[27] 26786298 366 253 0.836 36.12 1.33 1.6 2.35 3.7 5.48 45.34 0 3.55 0.56 41 
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[28] 26786298 366 255 0.817 36.12 1.33 4.72 2.35 3.7 5.48 45.34 0 3.55 0.56 42 

[26] 15596038 393 270 0.82 36.8 4.37 1.2 6.26 6.93 7.51 31.28 0 2.13 0 43 

[2] 26393294 367 199 0.841 36.84 2.01 1.2 1.72 2.37 3.81 52 0 0 0 44 

[2] 26400189 367 199 0.841 36.84 2.06 1 1.72 2.37 3.81 52 0 0 0 45 

[6] 22408100 342 255 0.823 37 4 2.8 2 6 8 42 0 0 0 46 

[22] 19808760 348 230 0.896 37.3 2.49 3.47 4.1 6.13 8.83 36.02 0.75 1.45 0.13 47 

[22] 11824582 329 289 0.904 37.51 4.45 4.38 5.48 7.92 8.66 31.55 0 0.47 0.49 48 

[22] 11934899 366 254 0.877 38.82 3.89 0.89 5.39 8.26 8.49 23.03 2.67 5.01 0.06 49 

[28] 25441812 342 291 0.901 39 1.6 4.81 1.15 0.9 4.54 50.5 0 1.06 0.36 50 

[22] 11755634 330 227 0.863 39.62 4.53 1.5 6.03 7.28 7.85 29.35 0 0.08 0.45 51 

[22] 17271474 349 274 0.898 39.71 3.1 3.51 2.97 5.94 8.67 35.97 0.69 1.37 0.08 52 

[22] 12583010 330 324 0.92 39.74 3.29 3.48 4.77 6.59 7.51 31.89 0 2.51 0.19 53 

[22] 11376420 331 221 0.848 40.32 4.34 4.03 4.07 7.38 8.92 31.15 0 0.19 0.15 54 

[22] 13472439 372 217 0.855 40.41 0 4.62 6.4 10.18 9.25 26.68 0 1.38 1.67 55 

[22] 12962224 331 247 0.875 40.47 4.27 2.62 5.88 6.6 6.89 30.21 0 0.65 0.41 56 

[22] 12941540 371 249 0.876 40.81 3.33 5.93 4.97 9.23 10.76 26.95 0.21 1.12 0 57 

[25] 9969881 343 237 0.851 41.02 1.88 3.76 7.87 9.6 6.99 25.45 0 0.13 1.13 58 

[22] 11962478 331 268 0.892 41.1 3.85 2.92 5.24 7.28 7.25 30.56 0 0.51 0.45 59 

[22] 12445114 329 279 0.879 41.62 3.7 3.54 3.73 6.06 7.78 32.93 0 1.16 0.1 60 

[22] 12583010 330 299 0.914 42.08 3.22 3.42 4.61 6.36 7.3 30.26 0 2.46 0.18 61 

[22] 11252314 329 252 0.88 42.31 4.41 3.71 5.06 7.38 8.29 28.39 0 0.48 0.29 62 

[22] 9411402 328 271 0.879 42.38 2.55 4.442 6.07 8.6 8.93 27.23 0 0.17 0.36 63 

[26] 14775556 394 207 0.865 42.72 3.35 2.2 5.384 6.73 7.894 26.58 0.38 2.07 0.45 64 

[22] 11307472 331 236 0.88 42.91 2.88 2.84 4.11 6.21 7.55 33.25 0 0.41 0.48 65 

[22] 11397104 329 242 0.877 43.1 2.66 1.62 6.05 6.98 7.84 29.9 0 0.07 0.56 66 

[22] 14548028 383 252 0.851 43.29 2.78 3.37 2.4 6.07 9.24 33.35 0 1.25 0 67 

[22] 10342200 331 145 0.9 43.29 3.79 5.85 3.97 6.63 8.51 29.46 0 0.49 0.2 68 

[26] 9818195 374 180 0.847 44 4.84 1 6.79 7.37 7.21 22.92 0 0.82 0.18 69 

[22] 11928004 333 271 0.9 44.38 3.05 1.79 3.22 6.07 7.44 33.12 0 0.72 0.21 70 

[22] 10342200 331 141 0.897 44.59 3.87 3.73 4.15 6.36 8.17 28.51 0 0.48 0.15 71 

[22] 10673150 330 249 0.862 44.68 4.11 2.61 3.81 7.43 8.63 28.56 0 0.17 0 72 

[22] 10893784 330 290 0.901 44.68 3.84 3.25 3.96 6.19 7.96 29.44 0 0.54 0.14 73 

[22] 12176217 331 274 0.925 44.78 3.62 2.71 4.78 6.52 8.66 28.62 0 0.12 0.19 74 

[25] 9556193 342 238 0.868 44.81 2.85 5.17 6.85 8.71 7.18 23.71 0 0.12 0.06 75 

[22] 11341946 330 254 0.88 44.88 4.2 4.08 3.72 6.73 8.26 27.8 0 0.3 0.03 76 

[22] 11983162 329 251 0.889 44.91 0.99 1.97 4.88 7.23 7.6 31.42 0 0.8 0.2 77 

[28] 23897377 344 250 0.888 45.08 1.01 0.94 1.08 0.89 4.2 45.4 0 1 0.4 78 

[22] 10790362 329 272 0.902 45.72 3.11 3.1 4.61 6.9 7.54 27.75 0 0.83 0.44 79 

[26] 11928004 373 327 0.872 45.8 4.03 4.45 5.3 6.68 8.56 23.64 0 1.34 0.2 80 

[22] 10997206 329 222 0.878 46.01 4.33 4.68 5.61 6.39 6.87 25.56 0 0.22 0.33 81 

[22] 10569728 330 264 0.902 46.03 3.81 4.88 5.15 6.53 6.37 25.49 0.04 1.02 0.68 82 

[21] 9135610 342 242 0.864 46.04 4.24 4.71 6.6 8.51 6.45 22.8 0 0.12 0.53 83 

[22] 10549044 330 256 0.905 46.12 3.89 4.35 6.01 6.8 6.78 24.75 0.01 1.06 0.23 84 
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[22] 10342200 331 253 0.892 46.57 4.22 4.08 4.03 6.05 7.71 26.52 0 0.47 0.35 85 

[22] 11410894 329 214 0.887 46.7 3.5 3.29 4.45 6.34 6.89 27.79 0 0.5 0.54 86 

[25] 8411656 342 257 0.87 47.03 5.45 3.84 6.37 8.11 6.21 21.32 0 0.28 1.39 87 

[22] 11583264 330 274 0.908 47.5 4.26 4 3.6 4.85 6 28.27 0 1.26 0.26 88 

[25] 8666764 342 236 0.863 47.54 3.85 4.75 7.1 8.39 6.03 21.62 0 0.18 0.54 89 

[22] 12072795 329 270 0.892 47.6 2.64 1.63 2.82 5.68 7.42 31.34 0 0.81 0.06 90 

[25] 8335813 343 237 0.857 47.67 5.11 5.95 6.9 7.05 5.8 20.64 0 0.1 0.78 91 

[22] 11135102 330 250 0.876 47.7 3.25 2.07 3.17 6.46 7.91 28.81 0 0.51 0.12 92 

[22] 9645825 330 227 0.884 47.85 3.67 4.09 5.37 6.5 6.84 24.79 0 0.1 0.79 93 

[22] 9514824 329 152 0.896 47.9 3.68 2.58 3.59 6.3 7.86 27.55 0 0.39 0.15 94 

[22] 9700984 342 226 0.864 47.9 3.44 4.63 6.24 7.83 6.28 22.84 0 0.16 0.68 95 

[30] 20339660 373 329 0.9594 47.96 1.62 1.57 1.93 4.05 3.47 36.37 0 2.46 0.57 96 

[6] 17374896 356 225 0.836 48.24 5.46 1.6 7.66 2.46 4.64 35.05 0 0.44 0.45 97 

[20] 17374896 356 225 0.9 48.24 5.46 1.6 1.66 2.46 4.64 35.05 0 0.44 0.45 98 

[31] 20698190 333 184 0.81 22.44 1.44 3.02 6.03 8.93 12.45 45.02 0 0.02 0.65 99 

[31] 8604710 397 205 0.72 48.85 5.43 5.87 7.33 6.38 5.4 17.74 0 2.53 0.47 100 

[22] 10617992 331 245 0.879 48.9 3.52 2.47 4.42 5.87 6.9 27.53 0 0.28 0.11 101 

[22] 11010996 329 290 0.91 49.22 3.34 3.14 4.15 5.54 6.64 26.54 0.01 1.23 0.2 102 

[22] 11514316 328 239 0.866 49.54 2.76 1.96 2.04 5.15 7.27 30.48 0 0.65 0.15 103 

[22] 9652720 330 239 0.875 49.61 3.43 2.65 4.76 6.92 7.51 24.66 0 0.3 0.16 104 

[22] 10962732 330 228 0.863 49.94 2.84 1.81 3.41 6.19 7.68 27.77 0 0.15 0.21 105 

[25] 7749755 338 245 0.842 50.39 4.45 4.34 5.06 7.43 6.4 21.4 0 0.14 0.39 106 

[22] 11652212 331 264 0.889 50.45 2.64 1.71 2.53 4.75 6.5 31.22 0 0.17 0.03 107 

[29] 10342200 381 230 0.862 50.47 3.24 3.72 3.96 5.64 9.23 21.4 1.2 0.91 0.21 108 

[22] 7067170 329 225 0.849 51.22 3.61 2.92 6 8.43 8.1 19.5 0 0.15 0 109 

[22] 10673150 331 255 0.893 52.13 2.59 1.58 2.52 5.16 6.51 27.92 0 1.37 0.22 110 

[25] 7942810 345 247 0.85 54.66 2.67 4.49 4.87 6.89 5.52 19.76 0 0.12 1.02 111 

[27] 15906304 344 255 0.917 57.73 0.72 0.4 0.95 0.9 3.36 35.42 0 0.19 0.33 112 

[25] 2426970 338 231 0.857 64.81 5.42 6.14 7.69 5.83 2.59 6.05 0.51 0.75 0.21 113 

[25] 2578655 336 237 0.858 66.76 6.65 6.57 6.62 4.01 1.98 6.8 0.02 0.28 0.31 114 

[32] 20980876 422 182 0.8 28.58 2.21 3.28 5.13 9.01 10.398 40.91 0 0.24 0.25 115 

[25] 2592445 327 224 0.855 67.03 4.71 5.99 7.31 4.6 2.51 5.63 0 1.34 0.88 116 

[25] 2578655 333 233 0.86 67.15 6.19 6.65 7.31 3.71 1.54 7.14 0 0.01 0.3 117 

[25] 2385601 330 225 0.86 69.51 4.68 5.64 6.27 4.71 2.38 6.14 0 0.26 0.41 118 

[25] 3488769 338 258 0.872 71.03 5.23 4.47 3.64 1.87 1.45 9.99 1.41 0.56 0.35 119 

[25] 2482128 332 225 0.858 71.03 4.47 5.3 5.54 4.04 2.19 6.72 0 0.35 0.33 120 

[29] 1482382 317 296 0.855 71.9 3.75 6.28 6.3 3.89 1.81 5.81 0 0.01 0.25 121 

[22] 2158072 344 304 0.942 83.2 4.92 3.01 1.14 0.43 0.84 5.82 0 0.39 0.24 122 
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GA-LSSVM Modeling 

GA-LS-SVM was carried out by LSSVMLab 1.6 free toolbox and the Genetic Algorithm 

Toolbox of MATLAB R2008 b was used for parameter setting. All programs were run on a 

Pentium IV(CPU 2.7 GHz and 2GB RAM) personal computer with Windows XP operating 

system. 

Neural modeling 

Accuracy of neural network prediction strongly related to the number of neurons in the hidden 

layer. Fig. 3 illustrates the ARD versus the number of neurons in the hidden layer. This graph 

clearly shows that 13-15-1 topology is the best topology with a minimum amount of error. 

 
Fig. 3. Average relative deviation versus the number of neurons in the hidden layer 

 
Fig. 4. ARD of different methods 

Results and Discussion  

The parameter setting step of LS-SVM is the most important step. In this work, we used genetic 

algorithm optimization method for parameter setting. Data is divided into two parts (70% for 

training and 30% for testing). After training of data with the training subset, the average relative 

deviation of testing data was calculated for accurate determination of model. As mentioned 

before average relative deviation of testing data was used as an objective function in the 

parameter setting step. The average relative deviation was calculated by means of Eq. 27. 

Results showed the LS-SVM model with γ =39.82 and δ2=102.55 presents a minimum ARD. 

Also, our study showed a neural network with a sigmoid transfer function and 13-15-1 topology 

is the most accurate neural model. 
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Results showed GA-LS-SVM is more accurate than neural network and semi-empirical 

equations. The best semi-empirical equation has an ARD about 11% while our proposed model 

(withγ =39.82 and δ2=102.55) has an ARD of about 4.68% and the accuracy of the neural 

model is 8%. In Fig. 4 ARD of different methods is compared. 

Conclusions 

In this study, ANN and LS-SVM methods were compared with semi-empirical equations for 

the prediction of bubble point pressures of 122 crude oil samples. Pressure and temperature of 

these reservoir fluids were in a wide range of 1482382 and 34474000 Pa, and 317 and 427 K, 

respectively. Results showed that ARDs of testing data were 4.68% and 8% for LS-SVM and 

ANN models, respectively while the best semi-empirical equation’s ARD was 11%. Also, it 

was found that a unique LS-SVM with two appropriate adjusting parameters can predict the 

bubble pressure of reservoir fluids accurately. It can be concluded that LS-SVM and neural 

modeling can be considered as a suitable substitute for traditional empirical correlations 

obtained by regression. 

Nomenclature 

List of symbols  

bj Bias term 

ek Desired error 

K Kernel function 

Ki K-value of component i 

MW C7+ Molecular weight of C7+ 

P Pressure (Pa) 

Pci Critical pressure of component i (Pa) 

Pk Convergence pressure (Pa)  

Pri Reduced pressure of component i 

T Temperature (K) 

Tbi Normal boiling point of component i (K)  

TCi Critical temperature of component i (K) 

TCmix Critical temperature of the mixture (K) 

TRi Reduced temperature of component i  

TRmix Reduced temperature of the mixture 

w Weight vector 

xi Mole fractions of component i in the liquid phase 

yi Mole fractions of component i in the vapor phase 

zi Mole fraction of component i 

(xk, yk)  Original values of a sampling point 

 

Greek letters 
 

αk Lagrange multipliers 

γ, δ Parameters of LS-SVM model 

γC7+ Specific gravity of C7+ 

θ Output of each neuron 

φ (x) Nonlinear mapping function 

ψ Sum of weighted inputs to each neuron 

ωi Acentric factor of component i 
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List of abbreviations 

ANN Artificial neural network 

ARD Average relative deviations 

GA Genetic algorithms  

KKT Karush-Kuhn-Trucker  

LS-SVMs Least square support vector machines 

MLP Multi-layer perceptron  

QP Quadratic programming  

RBF Radial basis function  

RNN Recurrent neural networks  

SLT Statistical learning theory  

SRM Structural risk minimization  

SVMs Support vector machines 
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