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Abstract  
Gas hydrate often occurs in natural gas pipelines and process equipment at high 

pressure and low temperature. Methanol as a hydrate inhibitor injects to the 

potential hydrate systems and then recovers from the gas phase and re-injects to the 

system. Since methanol loss imposes an extra cost on the gas processing plants, 

designing a process for its reduction is necessary. In this study, an accurate back 

propagation neural network (BPNN) is designed for the prediction of methanol loss 

by the gas phase as a function of temperature, pressure, and methanol composition 

in the aqueous phase. Different configurations of BPNN were trained, tested, and a 

configuration providing the smallest absolute average relative deviation (AARD%) 

was chosen as an optimum structure. Finally, comparisons made among the 

accuracy of the developed BPNN model, process simulators, and probabilistic 

neural network (PNN). Results confirm that the designed BPNN model is more 

accurate than the other considered predictive tools. The BPNN provided an 

AARD=5.75% for prediction of experimental data, while Aspen-HYSYS, Aspen-

Plus, and PNN presented an AARD% of 9.71, 12.57, and 13.27, respectively.   
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Introduction 

Gas hydrates or clathrate hydrates refer to those solid porous materials that form when the empty 

cavities of the water structures occupy by the natural gas components such as methane [1]. It is 

about a hundred years that gas hydrate is distinguished as a serious operation problem in the 

natural gas and natural gas liquid processing plants [2]. These “ice-like” porous materials yield 

to some undesirable operating conditions such as blockage of the pipelines, increasing the 

pressure drops, and imposing extra economic costs in the gas processing plants. It is widely 

accepted that methanol can play a crucial role as a hydrate inhibitor agent in the gas processing 

plants and associated transportation pipelines [3]. Using methanol as a hydrate inhibitor agent 

has a history as long as the history of the invention of gas hydrates [4]. It is worthy to be noted 

that removal of water, heating the system, and reduction of pressure are some of the other 

proposed techniques for solving the problems of gas hydrates [5-7].  

By utilizing the Knudsen cell techniques, Iraci et al. [8] experimentally measured the methanol 

solubility in various aqueous solutions of Sulphuric acid at wide ranges of temperature. It was 

reported that increasing the temperature and pH reduces the amount of methanol solubility in 

aqueous solutions [8]. Bahadori and Vuthaluru [9] developed an Arrhenius-type function and 

Vandermonde matrix as practical paradigms for prediction of vapor pressures and vaporization 

loss of methanol in different methanol solutions. These variables were related to the methanol 
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concentration in aqueous solutions and temperature. Bahadori and Vuthaluru [10] derived an 

Arrhenius-type correlation for estimation of methanol solubility in the liquid phase of paraffinic 

hydrocarbons. The developed model relates this solubility to the temperature and methanol 

concentration in the water phase. Ghiasi et al. [11] designed three different artificial intelligent 

(AI) models including radial basis, multi-layer perceptron, as well as support vector machine for 

estimation of the methanol solubility in the liquid phase of saturated hydrocarbons. Temperature 

and methanol concentration in the aqueous phase are those independent variables that were used 

for designing the AI approaches [11]. Yousefinejad et al. [12] investigated the effects of 

polarization, topology, electronegativity, molecular weight, and volume fraction on the methanol 

and ethanol miscibility in different organic solvents using the quantitative structure-activity 

relationship models. 

Although using methanol as a gas hydrate inhibitor additive has been found a simpler and 

more cost-effective strategy than the other hydrate-inhibition processes [5-7], it may encounter 

some considerable economic expenses related to its loss by both gas phase and light hydrocarbon 

liquid phase [9,11]. Therefore, the development of an accurate and practical technique for the 

estimation of methanol loss by the hydrocarbon gas phase is required for designing an appropriate 

scenario for its reduction [13]. Since the methanol is a polar substance with the ability to form 

the hydrogen bonds, its vapor-liquid equilibrium (VLE) and liquid-liquid equilibrium (LLE) 

behaviors that are needed for calculation of methanol loss could only be accurately modeled by 

the complex equation of states that need high computational times and efforts [14]. Therefore, 

the focus of this research is concentrated on developing a simple and accurate BPNN paradigm 

for the prediction of methanol loss by the gas phase. A lot of experimental VLE and LLE 

information over wide ranges of temperature, pressure, and inhibitor compositions are collected 

from the gas processors association research reports of 117 and 149 (GPA RR 117, 149). These 

reports provide distribution of methanol in the aqueous phase, hydrocarbon liquid phase, as well 

as gas phase in nine different potentially hydrate systems [15,16].  

Indeed, in this study, two different types of artificial neural networks (i.e. BPNN and PNN) 

are developed using the aforementioned experimental VLE and LLE data for estimation of 

methanol loss by the hydrocarbon gas phase. Comparisons are also made among accuracies of 

the developed BPNN, PNN, and two commonly used process simulators namely Aspen-HYSYS 

and Aspen-plus. Finally, the best model is found and its performance for prediction of methanol 

loss by hydrocarbon gas phase is evaluated. 

Motivation And Novelty of Our Study 

Methanol loss by hydrocarbon gas phase in hydrate inhibition units that imposes additional costs 

on the gas processing plants is necessary to be reduced as much as possible. This loss is directly 

related to both VLE and LLE behaviors of methanol in the potential hydrate systems. Prior to 

design a scenario for reducing or maybe minimizing the methanol loss, it is necessary to develop 

a simple technique that could estimate methanol loss with acceptable accuracy. The polarity of 

methanol and its ability to form the hydrogen bonds produce some major complexities for 

accurate modeling of its VLE and LLE behavior by the equation of states. Our simple, 

straightforward, and accurate BPNN model uses some easily measured variable for accurate 

estimation of the methanol loss by hydrocarbon gas phase over wide ranges of conditions. 

Moreover, this BPNN model can be simply coupled with other approaches/software for 

minimizing as well as controlling the amount of methanol loss in the hydrate inhibition units. 

Artificial Neural Networks  

Artificial neural network (ANN) is one of the main branches of artificial intelligence techniques. 

ANN is suitable for both the processing and analysis of data in many scientific disciplines 
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[17,18]. These nonlinear learning mathematical methods are originally derived by simulation of 

the working process of the biological neuron system of human beings [19,20]. Hoseinpour et al. 

[21] employed different types of AI-based approaches (i.e. gene expression programming, 

adaptive neuro-fuzzy inference systems, and radial basis function neural networks) for estimation 

of the solubility of carbon dioxide in aqueous solutions of tetra-n-butylammonium bromide. Liu 

et al. [22] designed an ANN approach for prediction of both engine performance and exhaust 

emissions when an engine fueled with a zero to 60 volume percent n-butanol in gasoline. The 

blend concentration, equivalence ratio, compression ratio, and engine load constitutes the 

independent parameters for the ANN model [22]. 

It is widely accepted that the ANN model is capable to extract the relation among independent 

and dependent variables of the most complex multi-variable phenomena with any level of 

nonlinearity [23]. ANNs have already demonstrated their excellent performances for function 

approximation, data processing, as well as for pattern recognition [17,18,22].  

All of the ANN models constitute a relatively large number of interconnected key elements 

well-known as artificial neurons [24]. Artificial neural networks can simply create by putting 

given numbers of neurons in different layers. The first layer of the neuron receives information 

from an external source and after implementation of some mathematical manipulations sends 

their output(s) to the subsequent layer(s). Eq.1 explains the mathematical manipulation that 

performs on the entry data (xr). Indeed, this equation calculates the output of the neurons. 

)(
1

jr

N

r
jrj bxwfn += 

=  
(1) 

where wjr is the weight related to the connection between jth neuron and rth entry signal. Bj and nj 

explain the bias and output of jth neuron, respectively. As can be simply seen from Eq. 1, the 

entry signal to a neuron are manipulated through their multiplication by weights and summation 

by biases coefficients (i.e. ∑ 𝑤𝑗𝑟
𝑁
𝑟=1 𝑥𝑟 + 𝑏𝑗). This summation often called the net input, and often 

shown by netj as follows:  

jr

N

r

jrj bxwnet +=
=1  

(2) 

The value of net input passes through a function namely activation or transfer function (f) to 

provide the output of the neuron. In the present study, the function defined by Eq. 3 is applied as 

a transfer function in the hidden and output layers of the BPNN models. 

netjj
e

netf
−+

=
1

1
)(  (3) 

where f (net j) shows the neuron’s output. It will play a role as the input for the other neurons or 

presents the output of BPNN. The correlation indicated by Eq. 3 is usually called logarithm 

sigmoid transfer functions. This transfer functions compress its inputs into [0 1] domain [25]. 

Data Acquisition And Analyses 

As previously mentioned, GPA RR 117 and 149 report experimental both VLE and LLE data for 

nine different hydrate systems containing methane, n-heptane, methanol, methylcyclohexane, 

toluene, hydrogen sulfide, propane, carbon dioxide, and water over a wide range of temperature, 

pressure, and compositions. In these reports composition of methanol in the aqueous phase, 

hydrocarbon liquid phase, and gas phase have been measured experimentally. Information of the 
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considered hydrate systems, their experimental and operating conditions are summarized in 

Table 1. 

After collecting the required datasets, the next step is the selection of input variables i.e. 

independent variables of the predictive models. Temperature (T), pressure (P), and weight 

percent of methanol in the heavy liquid phase (aqueous phase) have been considered as 

independent variables of our proposed models. Indeed, all of our predictive models have been 

developed based on the assumption that the dependent variable (methanol loss) can be described 

as follows: 

Methanol loss = g (P, T, weight percent of methanol in the aqueous phase)  (4) 

Amount of methanol loss (ML) in the hydrocarbon gas phase in term of a kilogram of 

methanol in one million standard cubic meters of gas per weight percent of methanol in aqueous 

phase calculates as follow: 

gasofmeterscubicstandardMillion(%wt)phaseaqueousofcontentMethanol

(kg)phasegasinmethanolofMass
lossMethanol


=  (5) 

The numbers of neurons in the input and output layers of BPNN are equal with the number of 

independent and dependent variables, respectively. Therefore, all BPNN models have three and 

one nodes in their input and output layers, respectively. The schematic of the developed feed-

forward BPNN is illustrated in Fig. 1. 

Results And Discussions 

In this section, the procedure for selecting the best structures of the BPNN approach is explained. 

The scenarios of calculation of methanol loss by using the process simulators are also presented. 

Finally, comparisons are made among the performances of different intelligent models and two 

considered simulators for estimation of methanol loss, and the best one is introduced. In the last 

subsection, an effect of pressure and temperature on the methanol loss is investigated form both 

modeling and experimental point of views. 

 
Fig. 1. Schematic presentation of the developed BPNN for prediction of methanol loss in the gas phase 
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Table 1. Complete information about methanol loss in gas phase calculated from experimental data for hydrating 

mixture systems reported in GPA RR 117 and 149 

System 
Constituents of the 

feed stream 

Independent variables 
Dependent 

variable 

Methanol in 

aqueous phase 

(%wt) 

Temperature 

ranges (°C) 

Pressure ranges 

(kPa) 

Methanol loss 

(a) 

1  Methane, n-Heptane, 

Methanol, Water 

  

34.18 – 68.9 -10 – 50  6900 – 7072 6.53 – 170.94  

2 Methane, 

Methylcyclohexane, 

Methanol, Water 

  

34.35 – 68.52  -10 – 50  7017 – 7940  6.83 – 153.55  

3 Methane, Toluene, 

Methanol, Water 

  

33.22 – 65.11 -10 – 50 8003 – 9609 6.82 – 162.01 

4 Methane, Propane, 

Methanol, Water 

  

0.25 – 0.50 -3.89 – 37.8 3446.4 – 20871.6 15.25 – 94.46 

5 Methane, Carbon 

dioxide, Methanol, 

Water 

  

0.25 – 0.49 -3.89 – 37.78 3446.4 – 20726.8 16.11 – 108.18 

6 Methane, hydrogen 

sulfide, Methanol, 

Water 

  

0.24 – 0.52 -3.88 – 37.78 6892.8 – 20678.6 8.78 – 104.44 

7 Methane, Propane, n-

Heptane, Methanol, 

Water 

  

0.25 – 0.50 -3.89 – 37.78 6892.9 – 20706.1 14.62 – 107.99 

8 Methane, Propane, 

Methylcyclohexane, 

Methanol, Water 

  

0.25 – 0.50  -3.89 – 37.78  6892.9 – 20706.1  12.58 – 105.13  

9 Methane, Propane, 

Toluene, Methanol, 

Water 

  

0.25 – 0.49 -3.89 – 37.78 6892.9 – 20706.1 11.58 – 107.29 

a Kilogram of methanol in one millions standard cubic meters of gas/weight percent of methanol in heavy phase 

(aqueous phase) 

Selection of The Best ANN Model 

Backpropagation Neural Networks 

The number of layers and the number of neurons in each layer are two main issues related to the 

configuration of the BPNN model. The optimum configuration of the BPNN is often determined 

by a trial and error procedure by changing the number of layers and the number of neurons in 

each layer and finding the structure that provides the highest accuracy. Based on the work of  

Dua [26] a BPNN with only two layers (a hidden layer + output layer) is capable to learn the 

behavior of almost any type of nonlinear system [26]. Therefore a single hidden layer BPNN is 

employed in this research. The appropriate number of neurons in this hidden layer depends 

mainly on three issues: (1) level of complexity of the relation between independent and dependent 

variables, (2) size of experimental databank available for training and testing stages, and (3) 

amplitude of undesirable noise in the databank.  
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The small number of hidden neurons may cause the BPNN unable to converge to the desired 

accuracy, while a large number of neurons may lead to the over-fit on training data and cannot 

generalize the results for testing datasets. In the present study, the optimum number of hidden 

neurons has been determined by minimizing AARD% between experimental values of methanol 

loss and their associated calculated values by the BPNN. The AARD% can be calculated by the 

following equation: 

 











 −
=

N

i i

cal

ii

ML

MLML

N
AARD

.exp

..exp
100

%

 

(6) 

where ML shows methanol loss by gas phase, the exp and cal subscripts represent experimental 

and calculated values, respectively. Table 2 summarizes the results of trial and error analyses 

over different configurations of BPNN, differing with respect to the number of hidden neurons. 

AARD% of testing, training, and overall datasets for various BPNN architectures have been 

presented in this table. It is obvious that the minimum overall AARD% of 5.75 is obtained by a 

BPNN model with 16 hidden neurons. 

For better comparison and demonstration of this statement, the variation of the overall 

AARD% respect to the number of hidden neurons is graphically depicted in Fig. 2. As this figure 

indicates, increasing the numbers of hidden neurons will not always lead to an improvement in 

the accuracy of the BPNN model. 

 
Fig. 2. Variation of %AARD of different BPNN models with different number of hidden neurons 

According to Table 2 and Fig. 2, the BPNN model with only one hidden layer with 16 hidden 

neurons provides the minimum values for AARD% and hence it selected as an optimum 

topology. It should be mentioned that all of the BPNN has been trained by the Levenberg-

Marquardt algorithm [17]. 

To yield a better approximation result for the BPNN model, its biases and weights have to be 

optimized with respect to some performance measures during the training stage. At first, the 

independent variables are fed to the hidden layer of the BPNN and crossed through the output 

layer. Thereafter, it is possible to calculate the difference between the network predictions and 

the actual values and update the network’s parameters (i.e. weights and biases) by minimizing 

this difference. Variation of the observed difference between the network predictions and the 

actual values in terms of mean square error for the optimum BPNN model during the training 

stage is presented in Fig. 3. 
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Table 2. Sensitivity analyses for finding the best structure of BPNN model 

No. of hidden neurons a 
%AARD 

Testing dataset 

%AARD  

Training dataset 

%AARD  

Total dataset 

2 10.25 9.37 9.58 

3 7.96 9.78 9.34 

4 9.07 8.45 8.60 

5 8.40 6.83 7.21 

6 7.55 8.06 7.94 

7 8.67 5.85 6.52 

8 5.58 8.69 7.95 

9 9.45 7.76 8.16 

10 21.04 5.10 8.91 

11 15.51 4.57 7.19 

12 13.78 4.86 6.99 

13 8.69 5.75 6.45 

14 12.58 5.94 7.53 

15 14.26 4.54 6.86 

16 11.60 3.91 5.75 

17 14.22 4.20 6.60 

18 18.73 2.23 6.18 

19 24.29 3.07 8.14 

20 13.07 4.13 6.27 
the Best architecture among 20 different executions of networks 

 
Fig. 3. Schematic of error variation during the training stage of the optimum BPNN model 

Probabilistic Neural Networks 

The probabilistic neural networks (PNNs) which are the well-known classifier tools have widely 

used in pattern recognition problems. PNNs which are categorized as the feedforward ANNs, 

derived from the Bayesian network and Kernel Fisher discriminant analysis for making a decision 

with a Parzen window and a non-parametric function [27]. The probability of misclassification 

tried to be minimized [28]. Mathematical operations of the probabilistic neural networks for 

conducting the classification are performed in four different layers namely, input layer, pattern 

layer, summation layer, and output layer. It is widely accepted that the PNN is faster than BPNN. 

However, PNN requires a representative training set and a large memory. Also, the processing 

of new cases takes more time. 
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Although the PNN is a powerful tool for pattern recognition, it seems a good idea to estimate 

the methanol loss using this intelligent technique, too. This type of network has an adjusting 

parameter namely spread. It has a great influence on the performance of the PNN model, and it 

is necessary to select its value properly [29]. Therefore, for finding the best structure of the PNN, 

the focus is concentrated on the determination of the best value of the spread. Table 3 reports an 

accuracy of different PNN models, differing respect to the spread value for estimation of 

methanol loss by hydrocarbon gas phase. It is obvious that the PNN model the smallest value of 

spread shows the best performance. On the other hand, although this model has predicted the 

training dataset with acceptable accuracy (AARD = 4.24%), it provides relatively large errors for 

the prediction of the testing datasets (AARD = 95.56%). 

Table 3. Sensitivity analyses on spread parameter of PNN models for finding the best one 

Value of spread 
%AARD 

Testing dataset 

%AARD 

Training dataset 

%AARD 

Total dataset 

0.1 4.24 96.56 13.27 

0.2 4.49 8454.07 831.08 

0.3 4.44 672.81 69.82 

0.4 3.92 6777.43 666.54 

0.5 3.87 78573.27 7690.01 

0.6 4.33 669.31 69.38 

0.7 4.55 2378.81 236.81 

0.8 4.94 101.88 14.42 

0.9 4.46 6860.84 675.20 

1 4.44 400.45 43.18 

Prediction of Methanol Loss by Gas Phase using The Process Simulators 

As can be seen in Fig. 4, for prediction of the amount of methanol loss by Aspen-HYSYS and 

Aspen-plus, a three-phase separator is used. The information of the feed stream is known and fed 

to these process simulators. By using vapor-liquid as well as liquid-liquid equilibriums, they can 

simply separate the feed stream to three different products namely vapor phase, light liquid, and 

heavy liquid phases. Using the composition of methanol in vapor as well as the heavy liquid 

phase, and volume flow rate of gas, it is possible to calculate the methanol loss using Eq. 5. 

 

 
Fig. 4. Schematic of three-phase separator used in process simulators 

Finding The Best Predictive Tool for Calculation of Methanol Loss 

Table 4 reports the accuracies of BPNN, PNN, Aspen-HYSYS, as well as Aspen-plus in the 

estimation of methanol loss in different hydrate systems. The overall accuracies of these models 

in terms of AARD% are also presented in this table. It can be simply understood, that an overall 
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AARD% of the developed BPNN model is 5.75, while the best AARD% 9.71 and 12.57 are 

provided by Aspen-HYSYS and Aspen-Plus, respectively. Since the PNN is originally a 

classifier, not a function approximate approach, it presents the worst results for the prediction of 

methanol loss by the gas phase. 

Table 4: %AARD of the best developed BPNN, PNN, and commonly used process simulators for estimation of 

methanol loss in the gas phase of hydrocarbons 

System No. of data points BPNN Aspen-HYSYS Aspen-Plus PNN 

1 6 2.20 8.77 11.20 0.1 

2 6 4.94 13.85 12.01 18.52 

3 6 3.67 9.51 15.62 0.26 

4 13 5.22 7.44 16.67 56.05 

5 13 8.04 11.83 14.58 6.07 

6 12 10.16 10.06 13.26 4.08 

7 12 5.35 11.55 12.67 5.63 

8 12 5.61 9.44 14.68 6.06 

9 12 6.60 13.10 18.88 9.23 

Overall %AARD 5.75 9.71 12.57 13.27 

It can be simply observed that the designed BPNN model presents the minimum error for the 

prediction of the considered parameter. Therefore, it could be selected as the best predictive tool 

for the estimation of the methanol loss by the hydrocarbon gas phase among the considered 

models. It is observed that for prediction of the methanol loss the following conclusion can be 

made: BPNN > Aspen-HYSYS > Aspen-Plus > PNN 

 

Prediction of Methanol Loss By Hydrocarbon Gas Phase using The BPNN 

Correlation between the results of the BPNN model and the actual experimental methanol loss 

data for training subsets is illustrated in Fig. 5. The perfect fit (prediction of the BPNN model 

equal with real experimental data) is shown by a solid line. The close proximity of the obtained 

results by the BPNN model to the perfect fit in Fig. 5 reveals an excellent performance of the 

proposed model in the prediction of the experimental data of methanol loss. 

 
Fig. 5. The plot of experimental data of methanol loss versus the predicted values by the developed BPNN for 

the training dataset 
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Also, the performance of the optimum BPNN approach was evaluated using the testing dataset 

which they were not used in the training stage. Correlation between the predicted and 

experimental data for methanol loss for the testing data is illustrated in Fig. 6. It can be simply 

seen that the developed BPNN model accurately estimated the experimental data and its 

predictions are in close agreement with them. 

 

Parametric Study 

In this section, an effect of pressure, as well as temperature on the methanol loss by gas phase, is 

determined both experimentally and theoretically. Fig. 7 explains that the amount of methanol 

loss increases by increasing temperature and pressure.  

Moreover, the predicted values for methanol loss by two most accurate models i.e. BPNN and 

Aspen-HYSYS are also presented in this figure. It is obvious that the BPNN model not only 

persuades the trend of experimental data, but it also correctly predicted all individual data-points. 

 
Fig. 6.The plot of experimental data of methanol loss versus predicted values by the optimum BPNN for the 

testing dataset 

 
Figure 7: Investigation an effect of pressure and temperature on the methanol loss in the gas phase (System 

four, weight percent of methanol in feed stream= 0. 5 and 0.25 
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Conclusions 

The purpose of this work was to develop a practical/simple model based on artificial neural 

network for prediction of methanol loss by the hydrocarbon gas phase using experimental 

datasets of GPA RR 117 and 149. Optimum configurations of the BPNN model have been 

determined by conducting a trial and error procedure on the number of hidden neurons, while the 

best structure of PNN is selected by focusing on its spread parameter. The predictive capabilities 

of these intelligent approaches were then compared with two commonly used process simulators. 

The amount of methanol loss by the gas phase is calculated as a function of some easily and 

available variables i.e. pressure, temperature, and weight percent of methanol in the aqueous 

phase. An overall AARD% of 5.75 and 13.27 were observed between experimental and 

calculated data by the BPNN and PNN, respectively. The best AARD% of 9.71 and 12.57 for 

prediction of methanol loss by gas phase were provided by Aspen-HYSYS and Aspen-Plus, 

respectively. Sensitivity analyses confirm that the results of the BPNN model have better 

agreement with the experimental data than the other considered simulators/approaches. Our 

results show that the proposed BPNN model is both a practical and reliable predictive tool for 

modeling the methanol loss by hydrocarbon gas phase over wide ranges of operating conditions. 

This BPNN model can be simply coupled with other approaches/software for minimizing as well 

as controlling the methanol loss in the hydrate inhibition units. 

References 

[1] Ghaedi H, Javanmardi J, Rasoolzadeh A, Mohammadi AH. Experimental Study and Thermodynamic 

Modeling of Methane Hydrate Dissociation Conditions in the Simultaneous Presence of BMIM-BF4 

and Ethanol in Aqueous Solution. Journal of Chemical & Engineering Data. 2018 Apr 

16;63(5):1724-32.  

[2] Hammerschmidt EG. Formation of gas hydrates in natural gas transmission lines. Industrial & 

Engineering Chemistry. 1934 Aug 1;26(8):851-5. 

[3] Kvamme B, Selvåg J, Saeidi N, Kuznetsova T. Methanol as a hydrate inhibitor and hydrate activator. 

Physical Chemistry Chemical Physics. 2018;20(34):21968-87. 

[4] Hammerschmidt EG. Gas hydrate formations, A further study on their prevention and 

elimination from natural gas pipe lines. Gas. 1939 May;15(5):30-4. 
[5] Covington, Kimberly C., John T. Collie III, and Steven D. Behrens. "Selection of hydrate suppression 

methods for gas streams." 78th GPA Annual Convention, Nashville, TN. 1999. 

[6] Esteban A, Hernandez V, Lunsford K. Exploit the benefits of methanol. InProceedings of the 79th 

Gas Processors Association Annual Convention (GPA’00) 2000 Mar. 

[7] Eslamimanesh A, Mohammadi AH, Richon D, Naidoo P, Ramjugernath D. Application of gas 

hydrate formation in separation processes: A review of experimental studies. The Journal of 

Chemical Thermodynamics. 2012 Mar 1;46:62-71. 

[8] Iraci LT, Essin AM, Golden DM. Solubility of methanol in low-temperature aqueous sulfuric acid 

and implications for atmospheric particle composition. The Journal of Physical Chemistry A. 2002 

Apr 25;106(16):4054-60. 

[9] Bahadori A, Vuthaluru HB. Prediction of methanol loss in vapor phase during gas hydrate inhibition 

using Arrhenius-type functions. Journal of loss Prevention in the Process Industries. 2010 May 

1;23(3):379-84. 

[10] Bahadori A, Vuthaluru HB. Predictive tool for the estimation of methanol loss in condensate phase 

during gas hydrate inhibition. Energy & Fuels. 2010 Apr 14;24(5):2999-3002. 

[11] Ghiasi MM, Arabloo M, Bahadori A, Zendehboudi S. Prediction of methanol loss in liquid 

hydrocarbon phase during natural gas hydrate inhibition using rigorous models. Journal of Loss 

Prevention in the Process Industries. 2015 Jan 1;33:1-9. 

[12] Yousefinejad S, Eftekhari R, Honarasa F, Zamanian Z, Sedaghati F. Comparison between the gas-

liquid solubility of methanol and ethanol in different organic phases using structural properties of 

solvents. Journal of Molecular Liquids. 2017 Sep 1;241:861-9. 



264  Vaferi 

[13] Teixeira AM, de Oliveira Arinelli L, de Medeiros JL, Ofélia de Queiroz FA. Recovery of 

thermodynamic hydrate inhibitors methanol, ethanol and MEG with supersonic separators in 

offshore natural gas processing. Journal of Natural Gas Science and Engineering. 2018 Apr 1;52:166-

86. 

[14] Freire MG, Santos LM, Marrucho IM, Coutinho JA. Evaluation of COSMO-RS for the prediction of 

LLE and VLE of alcohols+ ionic liquids. Fluid Phase Equilibria. 2007 Jul 15;255(2):167-78. 

[15] Ng HJ, Chen CJ. Vapour-liquid and Vapour-liquid-liquid Equilibria for H2S, CO2, Selected Light 

Hydrocarbons and a Gas Condensate in Aqueous Methanol Or Ethylene Glycol Solutions: GPA 

Project 905. Gas Processors Association; 1995. 

[16] Ng HJ, Robinson DB. The solubility of methanol or glycol in water-hydrocarbon systems. Gas 

Processors Association Research Reports. 1988 Mar;117. 

[17] Vaferi B, Eslamloueyan R, Ayatollahi S. Automatic recognition of oil reservoir models from well 

testing data by using multi-layer perceptron networks. Journal of Petroleum Science and 

Engineering. 2011 Jun 1;77(3-4):254-62. 

[18] Vaferi B, Samimi F, Pakgohar E, Mowla D. Artificial neural network approach for prediction of 

thermal behavior of nanofluids flowing through circular tubes. Powder Technology. 2014 Nov 

1;267:1-0. 

[19] Amini Y, Fattahi M, Khorasheh F, Sahebdelfar S. Neural network modeling the effect of oxygenate 

additives on the performance of Pt–Sn/γ-Al 2 O 3 catalyst in propane dehydrogenation. Applied 

Petrochemical Research. 2013 Jul 1;3(1-2):47-54. 

[20] Davoudi E, Vaferi B. Applying artificial neural networks for systematic estimation of degree of 

fouling in heat exchangers. Chemical Engineering Research and Design. 2018 Feb 1;130:138-53. 

[21] Hoseinpour SA, Barati‐Harooni A, Nadali P, Mohebbi A, Najafi‐Marghmaleki A, Tatar A, Bahadori 

A. Accurate model based on artificial intelligence for prediction of carbon dioxide solubility in 

aqueous tetra‐n‐butylammonium bromide solutions. Journal of Chemometrics. 2018 

Feb;32(2):e2956. 

[22] Liu Z, Zuo Q, Wu G, Li Y. An artificial neural network developed for predicting of performance and 

emissions of a spark ignition engine fueled with butanol–gasoline blends. Advances in Mechanical 

Engineering. 2018 Jan;10(1):1687814017748438. 

[23] Oparaji U, Sheu RJ, Bankhead M, Austin J, Patelli E. Robust artificial neural network for reliability 

and sensitivity analyses of complex non-linear systems. Neural Networks. 2017 Dec 1;96:80-90. 

[24] Gholami E, Vaferi B, Ariana MA. Prediction of viscosity of several alumina-based nanofluids using 

various artificial intelligence paradigms-Comparison with experimental data and empirical 

correlations. Powder Technology. 2018 Jan 1;323:495-506. 

[25] Vaferi B, Eslamloueyan R, Ghaffarian N. Hydrocarbon reservoir model detection from pressure 

transient data using coupled artificial neural network—Wavelet transform approach. Applied Soft 

Computing. 2016 Oct 1;47:63-75. 

[26] Dua V. A mixed-integer programming approach for optimal configuration of artificial neural 

networks. Chemical Engineering Research and Design. 2010 Jan 1;88(1):55-60. 

[27] Specht DF. Probabilistic neural networks. Neural networks. 1990 Jan 1;3(1):109-18. 

[28] Zeinali Y, Story BA. Competitive probabilistic neural network. Integrated Computer-Aided 

Engineering. 2017 Jan 1;24(2):105-18. 

[29] Yi JH, Wang J, Wang GG. Improved probabilistic neural networks with self-adaptive strategies for 

transformer fault diagnosis problem. Advances in Mechanical Engineering. 2016 Jan 

6;8(1):1687814015624832. 

 

 

 

 

 

 

 

This article is an open-access article distributed under the terms and conditions 

of the Creative Commons Attribution (CC-BY) license. 

 

https://creativecommons.org/licenses/by/4.0/

	Abstract
	Introduction
	Motivation And Novelty of Our Study

	Artificial Neural Networks
	Data Acquisition And Analyses

	Results And Discussions
	Selection of The Best ANN Model
	Backpropagation Neural Networks
	Probabilistic Neural Networks

	Finding The Best Predictive Tool for Calculation of Methanol Loss
	Prediction of Methanol Loss By Hydrocarbon Gas Phase using The BPNN
	Parametric Study

	Conclusions
	References

