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Abstract  
Using a sulfonated polyacrylamide (SPAM) and Cr3+, a new colloidal dispersion 

gel (CDG) was prepared. The viscosity of the CDG samples in different crosslinker 

concentrations and brine compositions was measured. The results showed that 

CDGs approach a Newtonian-like behavior in high crosslinker concentrations and 

salinities, signifying that they possess more rigid, less flexible particles that can be 

used to block some of the pore throats of the high-permeability layers. Therefore, 

three core flood tests were performed and the retention of the polymers and the final 

RRF values (residual resistance factor) were determined. Although CDGs showed 

a lower tendency to be adsorbed onto the rocks, they caused drastically higher RRF 

values (caused higher permeability reductions). Thus, it can be concluded that 

CDGs are superior compared to normal polymer solutions in modifying the 

permeability. Moreover, changing the post-flood fluid from brine to distilled water 

caused the RRF to decrease, hence a weaker effect on the permeability. 

Keywords: 
Permeability Modification, 

CDG,  

Colloidal Dispersion Gel, 

Polyacrylamide,  

Chromium. 

 

Introduction 

Mature reservoirs with a lot of unproduced oil need to receive more attention to be able to 

produce these unproduced reserves [1, 2]. Waterflooding is a common method to overcome the 

problems associated with these mature reservoirs and produce more oil. However, this method 

is associated with several limitations, such as low sweep efficiency, high water cut, early water 

breakthrough, and viscous fingering. To overcome some of the limitations of regular 

waterflooding, the mobility ratio (Eq. 1) must be improved.  

𝑀 = (𝑘𝑤/µ𝑤 )/(𝑘𝑜/µ𝑜 )          (1) 

where M is the mobility ratio, 𝑘𝑤and 𝑘𝑜 are water and oil permeability and µ𝑤 and µ𝑜 are the 

water viscosity oil viscosity, respectively [3-5]. One way to positively affect the mobility ratio 

is to increase the viscosity of the displacing fluid (water) or to decrease its permeability.  

Polymers have been widely used as a method of enhancing the viscosity of water [6-11]. Among 

polymers, polyacrylamide family (Partially Hydrolyzed Polyacrylamide (PHPAM) and 

Sulfonated Polyacrylamides known as SPAM) have been frequently tested and used for this 

purpose [12-15]. These are polymers a portion of whose amide groups have been replaced by 

anionic groups.  
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A more novel approach to address the shortcomings of regular waterflooding is to use 

colloidal dispersion gels (CDGs) [16, 17]. Colloidal dispersion gels are formed when the 

polymer and crosslinker concentrations are sufficiently low that no 3D structure is formed and 

most of the crosslinkings are intramolecular-the crosslinker (multivalent cation) links different 

anionic sites of the polymer to each other [18].  This causes the formerly straightly-aligned 

molecules of the polymer to form polymer coils that are more rigid and smaller than the normal 

polymers.  

This property can be used to modify water flow in reservoirs by lowering the permeability 

of high-permeability streaks and thus diverting the flow towards layers with less permeability. 

As discussed by Wang et al., CDGs can alter the permeability of the rocks due to both 

adsorptions onto the rock surface and blockage of the pore throats[19].   

To the best of our knowledge, only a few researchers have studied the performance of 

colloidal dispersion gels in reducing the permeability of the high-permeability layers at the core 

scale. Wang et al. studied the permeability reduction caused by CDGs that were prepared using 

HPAM and Al3+. According to their results, the weak gels prepared using the aforementioned 

materials are highly more effective in reducing the permeability of the rock than normal HPAM 

solutions[19]. This can be attributed to the ability of the gel particles to block the pore throats. 

Spildo et al. studied the retention of CDGs prepared with HPAM and Al3+ in sandstone cores. 

They reported somewhat mixed results, as in some cases the polymer solutions showed higher 

retention, while in others CDGs showed higher retention values. Moreover, they did not report 

any data on the permeability reductions caused by CDG or polymer solution[20]. Therefore, no 

direct conclusion can be drawn from their results to relate retention to the residual resistance 

factor or RRF (The permeability of the rock before the polymer/CDG flood to its permeability 

after the polymer/CDG flood).   

Given that there are not enough quantitative studies on both the permeability reduction 

capacity and retention of a single CDG type, there is still controversy on the mechanism that 

CDGs reduce permeability. Furthermore, while there is a study on the CDG formation using 

Sulfonated polyacrylamides[18], no flow performance test has been conducted on the 

performance of CDGs that are formed using SPAM. Therefore, in this study, a sulfonated 

polyacrylamide was selected and used to prepare CDG samples. The viscosity of the samples 

in different shear rates, crosslinker to polymer ratios (CPR), and different brine compositions 

were measured. For the first time, a series of core flood experiments was conducted to evaluate 

the SPAM-CDG retention and its capacity to lower the permeability. 

Materials and Methods 

Materials 

The polymer used in this study is a sulfonated polyacrylamide (AN 125) with a molecular 

weight of 8 million Daltons and a sulfonation degree equal to 25% [21] supplied by SNF 

Floerger. The crosslinker, Chromium (III) acetate hydroxide, was purchased from Sigma-Aldrich. 

Four different salts, including NaCl, KCl, CaCl2, and MgCl2 were used to prepare the 

electrolytes in this research. All salts were of analytical grades and were purchased from Merck.  

To study the retention and the permeability reduction capacity of the samples, three 

sandstone cores from the same formation with similar porosity and permeability values were 

used. The properties of the core samples are listed in Table 1.  

 Table 1. Properties of the cores used in this study 

Core Length (cm) Diameter (cm) Porosity (%) Permeability (md) 

A 10 3.5 0.19 459 

B 10 3.5 0.19 472 

C 10 3.5 0.2 443 



Journal of Chemical and Petroleum Engineering 2021, 55(1): 1-10 3 

Methods 

Sample preparation 

First, a stock sample with a polymer concentration of 5000 ppm was prepared and stored for 

further use in preparing the polymer and CDG samples with the required concentrations (by 

diluting). The solution was stirred using a stirrer at 100 RPM for 48 hours. The 48 hours were 

selected since after 48 hours, the polymer solutions seemed completely clear and homogenous.  

Separately, a 1000-ppm cross-linker (Cr3+) solution was prepared to be used in the CDG 

solutions. This was done because the chromium concentration in the CDG samples was 

extremely low (43 and 65 ppm) and using the powdered form of the crosslinker to prepare the 

final samples in a single step might cause significant experimental errors because of the errors 

in weighing the negligible amount of crosslinker. 

Ultimately, the required amount of these stock solutions, crosslinker, and polymer stock 

solutions, were mixed with the required amount of distilled water and salts to prepare the final 

CDG or polymer solutions with the required compositions. The samples were stirred at 100 

RPM for two hours and then were placed in an oven at 60ºC for four days to allow the 

crosslinking reactions to occur. Table 2 lists all the samples prepared and used in this study and 

their respective polymer, crosslinker, and salt concentrations. The last column shows the values 

of the fitted power-law equation parameters for the samples. 

Table 2. The polymer and CDG samples used in this study 

Sample 
Polymer conc. 

(ppm) 
CPR Salt content 

Power-law parameters 

k (Pa.sn) n 

1 1300 0 0 0.452 0.449 

2 1300 1/30 0 0.2527 0.487 

3 1300 1/20 0 0.1457 0.538 

4 1300 1/30 5000 ppm NaCl - - 

5 1300 1/30 5000 ppm KCl - - 

6 1300 1/30 5000 ppm CaCl2 - - 

7 1300 1/30 5000 ppm MgCl2 - - 

 

Viscosity measurement 

A rheometer (Anton Paar QC viscometer, Austria) was utilized to determine the apparent 

viscosity of the samples in different shear rates. The CC42 spindle, which is proper for low-

viscosity polymer solutions, was used in this study. A circulator capable of maintaining the 

temperature was coupled with the rheometer to test the viscosities at 25 ºC temperatures. All 

the viscosity measurements were conducted at 25 ºC and atmospheric pressure. 

Retention and permeability reduction 

As mentioned in the materials section, three sandstone cores with almost similar permeability 

values were used in this study.  

The following steps were performed to determine the retention of polymers and the RRF 

caused by the polymer and CDG samples. 

First, the cores were placed in a core holder and then two pore volumes of the 5000-ppm of 

NaCl solution were injected into the cores with a rate of 0.3 ml/min. At the end of this step, the 

differential pressure  was recorded and known as 𝑑𝑃1. Second, two cylinders were filled with 

brine and the proper preformed polymer solution (either CDG or normal polymer solution).  

Then, the cores were flooded using two pore volumes of CDG or polymer solutions. Afterward, 

in the third step, the cores were flooded by three pore volumes of the post-injection fluid (brine 
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or distilled water). At the end of this step, the differential pressure is recorded and known as 

𝑑𝑃2.  

At the end of the process, the effluent solution’s polymer concentration was measured and 

the adsorbed amount of the polymer was calculated by subtracting the effluent polymer from 

the injected amount. 

To determine RRF, Eq. 2 can be used.  

𝑅𝑅𝐹 = 𝑑𝑃2/𝑑𝑃1                   (2) 

𝑑𝑃2 and 𝑑𝑃1 are described above.  

Polymer concentration measurement 

In this study, the UV-Vis method, a trusted method [22, 23], was used to measure the 

concentration of the polymer in the effluent solution[30,31]. Agilent Cary 60 

Spectrophotometer (Agilent Technologies, Santa Clara, CA, USA) is utilized in this research. 

Results and Discussion 

CDG formation 

To be certain of the formation of CDG, a thorough literature review was performed to 

understand whether CDGs are formed using AN 125 and chromium (III) acetate or not. Alvand 

et al. used AN 125 and chromium acetate (the same material used in this study) to prepare CDG 

solutions. The formation of CDG was confirmed in their study using DLS, SEM, and viscosity 

measurements over time [18]. As Fig. 1 demonstrates, the viscosity of Sample 2 decreases with 

time, which is indicative of the formation of colloidal dispersion gel. This is also confirmed by 

other researchers, too,  as they suggest that the reduction in viscosity after adding the crosslinker 

signifies the occurrence of intramolecular crosslinking reactions and thus the formation of CDG 

[10, 24]. One may argue that the reduction in the viscosity might be partly due to the thermal 

degradation of the polymer molecules (the samples were placed in an oven at 60 ºC for four 

days). Nonetheless, as other researchers have mentioned, SPAM solutions are almost not 

affected by the thermal degradation up to 120 ºC [25]; therefore, the reduction in viscosity after 

adding the crosslinker is solely due to the formation of intramolecular bonds. It is also worth 

mentioning that the apparent  viscosity of the CDG samples did not experience any significant 

reduction after four days, so all he samples were tested after being in a 60ºC oven for four days. 

 
Fig. 1. Apparent viscosity of Sample 3 Vs time 
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Viscosity 

Different polymer and CDG samples with different polymer concentrations, CPR and salinities 

were prepared and their apparent viscosities were measured versus shear rate (see Table 2). 

These samples are used to study the effect of CPR and salinity on the apparent viscosity of 

CDG samples prepared using AN125 and chromium (III) acetate hydroxide. The viscosity data 

for the samples were fitted to the modified form of the power-law equation (Eq. 5) and their 

respective 𝑘 and  𝑛 values are listed in Table 2. Eq. 5 is derived by combining the power-law 

equation Eqs. 3 and 4. 

𝜏 = 𝑘𝛾𝑛              (3) 

𝜏 =  𝜂𝛾                           (4) 

 𝜂 =  𝑘𝛾𝑛−1              (5) 

where 𝜏, 𝑘, 𝛾 and 𝑛 are shear stress (Pa), flow consistency index (Pa.sn), shear rate (s-1) and the 

flow behavior index (dimensionless), respectively.  

 
Fig. 2. Apparent viscosity Vs shear rate for Sample 1, Sample 2 and Sample 3 at 25 ºC 
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molecular reactions [19], which are beneficial in lowering the permeability of the rock (will be 

discussed further in the paper). With this in mind, the effect of different salts on the crosslinking 

reactions was studied through viscometry. Four different salts, including NaCl, KCl, CaCl2 and 

MgCl2 were used to study the effect of salts on the stability of the CDG samples prepared using 

AN 125 and Chromium (III) acetate hydroxide. Two monovalent and two divalent cations were 

used to determine the relative effect of the cation type on the apparent viscosity and stability of 

CDG. All the samples in this part were prepared using 5000-ppm electrolytes. Fig. 3 

demonstrates the apparent viscosity of the CDG samples prepared using different salts. 

 
Fig. 3. Effect of salts on the viscosity of CDGs (1300/30/5000) at 25 ºC 
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part of the study, three different cores with nearly the same permeability and porosity were used 

to determine the polymer retention and the RRF. Table 3 lists the flood tests performed in this 

study with details about the type of the injected fluids. 

Table 3. The core flooding experiments and their respective information 

Experiment Core Solution used 
Post-flooding 

solution 

AN 125 A Sample 1 (polymer) Brine-5000 ppm NaCl 

CDG B Sample 2 (CDG) Brine-5000 ppm NaCl 

CDG-distilled C Sample 2 (CDG) Distilled water 

Three different samples were used as the flooding agents. Fig. 4 demonstrates the retention of 

the polymers (normal polymer particles or CDG particles) in the three experiments. In two of 

the experiments, CDG was the flooding agent in the second step (CDG and CDG-distilled in 

the graph). It must be noticed that in CDG, the post-flooding fluid is the same electrolyte as the 

electrolyte with which the CDG sample was prepared, while in the case of CDG-distilled, the 

post-flooding fluid was distilled water. This was performed to study the effect of the electrolyte 

on the retention and permeability reduction of the samples. As Fig. 4 shows, there is not a 

noticeable difference between the retention of CDG and AN 125. However, AN 125 shows 

slightly greater retention. This is also reported by Spildo et al., for CDGs prepared using HPAM 

and Al3+ [20]. This is thought to be partly due to the availability of more negative sites in the 

case of normal polymer solutions in comparison to CDG samples (in CDGs, some of the sites 

are crosslinked to Cr3+ cations). The negative sites of the polymers can enter interactions with 

the clay surfaces and adsorb onto them, while in CDGs, fewer available negative sites for these 

types of interactions exist, hence the lower retention of CDG[20].  

 
Fig. 4. Retention of the samples 
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Therefore, these particles do not deform or stretch when exposed to high shear rates at pore 

throats and can block some of the pores, while most of the retention of normal polymer solutions 

is caused by their adsorption onto the surface of the rock, not by blocking the pore throats. This 

causes the superiority of the CDG samples concerning the normal polymer solutions in 

improving the flood.  

 
Fig. 5. RRF for CDG and polymer solution 
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exhibit much better performance in lowering the permeability of the rocks by blocking some of 

the pore throats. Also, the composition of the post-food fluid is important. Changing the post-

flood fluid from 5000-ppm NaCl solution to distilled water reduced the overall RRF of the CDG 

and slightly increased its retention. 
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