[1] Tahmasebi-Boldaji, R. (2023). The Effect of Ultrasonic Waves on Crude Oil Recovery. In
Topics on Oil and Gas. IntechOpen. DOI:
10.5772/intechopen.106494.
[2] Denysiuk, I., Skurativska, I., Hubar, I., Saliuk-Kravchenko, O., & Taraduda, D. (2024). Wave Methods for Oil Extraction Enhancing: Theoretical Support, Safety Issues, and Prospects. In Systems, Decision and Control in Energy VI: Volume I: Energy Informatics and Transport (pp. 329-347). Cham: Springer Nature Switzerland. ISBN: 978-3-031-68372-5.
[3] Shaker, D. H., Ibrahim, R. I., & Oudah, M. K. (2024). Conventional and Unconventional Enhanced Oil Recovery Development Trend of Ultrasound Application in EOR.
Iraqi Journal of Oil and Gas Research (IJOGR),
4(1), 76-96. DOI:
10.55699/ijogr.2024.0401.1065.
[4] Liu, T., Hou, C., Li, H., Dahlen, P., & Guo, Y. (2024). The impact of solid particles and oil characteristics on the separation efficacy of oil sludge ultrasonic treatment.
Chemical Engineering and Processing-Process Intensification,
205, 109965. DOI:
https://doi.org/10.1016/j.cep.2024.109965.
[5] Kairgeldina, L. K., & Sarsenbekuly, B. (2024). Alternative Methods of thermal Oil Recovery: A Review.
Kazakhstan journal for oil & gas industry,
6(1), 50-63. DOI:
https://doi.org/10.54859/kjogi108692.
[6] Taherynia, M. H., Fatemi Aghda, S. M., & Fahimifar, A. (2023). Effects of ultrasonic waves on water imbibition into oil-wet carbonate reservoirs (a case study).
Petroleum Science and Technology,
41(1), 14- 29. DOI:
https://doi.org/10.1080/10916466.2021.2024226.
[7] Dengaev, A. V., Kayumov, A. A., Getalov, A. A., Aliev, F. A., Baimukhametov, G. F., Sargin, B. V., ... & Vakhin, A. V. (2023). Chemical Viscosity Reduction of Heavy Oil by Multi-Frequency Ultrasonic Waves with the Main Harmonics of 20–60 kHz.
Fluids,
8(4), 136. DOI:
https://doi.org/10.3390/fluids8040136.
[8] Otumudia, E., Hamidi, H., Jadhawar, P., & Wu, K. (2022). The utilization of ultrasound for improving oil recovery and formation damage remediation in petroleum reservoirs: review of most recent researches.
Energies,
15(13), 4906. DOI:
https://doi.org/10.3390/en15134906.
[9] Agi, A., Junin, R., Jaafar, M. Z., Sidek, M. A., Yakasai, F., Gbadamosi, A., & Oseh, J. (2022). Laboratory evaluation to field application of ultrasound: A state-of-the-art review on the effect of ultrasonication on enhanced oil recovery mechanisms.
Journal of Industrial and Engineering Chemistry,
110, 100-119. DOI:
https://doi.org/10.1016/j.jiec.2022.03.030.
[10] Razavifar, M., Qajar, J., & Riazi, M. (2022). Experimental study on pore-scale mechanisms of ultrasonic-assisted heavy oil recovery with solvent effects. Journal of Petroleum Science and Engineering, 214, 110553. DOI:
https://doi.org/10.1016/j.petrol.2022.110553.
[11] Feng, J., Yan, T., Cao, Y., & Sun, S. (2022). Ultrasonic-assisted rock-breaking technology and oil and gas drilling applications: A review. Energies, 15(22), 8394. DOI:
https://doi.org/10.3390/en15228394.
[13] Agi, A., Junin, R., Jaafar, M. Z., Amin, N. A. S., Sidek, M. A., Nyakuma, B. B., ... & Azli, N. B. (2022). Ultrasound-assisted nanofluid flooding to enhance heavy oil recovery in a simulated porous media. Arabian Journal of Chemistry, 15(5), 103784. DOI:
https://doi.org/10.1016/j.arabjc.2022.103784.
[14] Dargi, M., Khamehchi, E., & Mahdavi Kalatehno, J. (2023). Optimizing acidizing design and effectiveness assessment with machine learning for predicting post-acidizing permeability. Scientific Reports, 13(1), 11851. DOI:
10.1038/s41598-023-39156-9. PMID: 37481625; PMCID: PMC10363159.
[15] Norouzpour, M., Azdarpour, A., Santos, R. M., Esfandiarian, A., Nabipour, M., Mohammadian, E., ... & Keshavarz, A. (2023). Comparative static and dynamic analyses of solvents for removal of asphaltene and wax deposits above-and below-surface at an Iranian carbonate oil field. ACS omega, 8(28), 25525- 25537. DOI:
10.1021/acsomega.3c03149. PMID: 37483249; PMCID: PMC10357422.
[16] Gong, X., Ma, X., Liu, Y., & Li, G. (2022). Advances in hydraulic fracture propagation research in shale reservoirs. Minerals, 12(11), 1438. DOI:
https://doi.org/10.3390/min12111438.
[17] Nixon, S. L., Plominsky, A. M., Hernandez-Becerra, N., Boothman, C., & Bartlett, D. H. (2023). Microbial communities in freshwater used for hydraulic fracturing cannot withstand the high temperatures and pressures of fractured shales. Access Microbiology, 5(4), 000515-v3. DOI:
10.1099/acmi.0.000515.v3. PMID: 37223063; PMCID: PMC10202394.
[18] Benhamou, J., Jami, M., Mezrhab, A., Henry, D., & Botton, V. (2023). Numerical simulation study of acoustic waves propagation and streaming using MRT-lattice Boltzmann method. International Journal for Computational Methods in Engineering Science and Mechanics, 24(1), 62-75. DOI:
https://doi.org/10.1080/15502287.2022.2050844.
[19] Liu, P., Liu, A., Liu, S., & Qi, L. (2022). Experimental evaluation of ultrasound treatment induced coal's pore structure and gas desorption behavior alterations. Fuel, 307, 121855. DOI:
https://doi.org/10.1016/j.fuel.2021.121855.
[20] Stringfellow, W. T., Camarillo, M. K., Domen, J. K., & Shonkoff, S. B. (2017). Comparison of chemical-use between hydraulic fracturing, acidizing, and routine oil and gas development. PLoS One, 12(4), e0175344. DOI:
10.1371/journal.pone.0175344. PMID: 28422971; PMCID: PMC5396893.
[21] Li, Y., Zhou, F., Li, B., Cheng, T., Zhang, M., Wang, Q., ... & Liang, T. (2022). Optimization of fracturing fluid and retarded acid for stimulating tight naturally fractured bedrock reservoirs. ACS omega, 7(29), 25122-25131. DOI:
10.1021/acsomega.2c01612. PMID: 35910177; PMCID: PMC9330227.
[22] Khalili, Y., Rafiei, Y., & Sharifi, M. (2022). Reservoir Characterization by Applying Pressure Transient Analysis on Data Obtained from Electrical Submersible Pumps. Journal of Petroleum Research, 32(126), 110-125. DOI:
10.22078/pr.2022.4816.3158.
[23] Meribout, M. (2018). On using ultrasonic-assisted enhanced oil recovery (EOR): recent practical achievements and prospects. IEEE Access, 6, 51110-51118.
[24] Shields IV, C. W., Cruz, D. F., Ohiri, K. A., Yellen, B. B., & Lopez, G. P. (2016). Fabrication and operation of acoustofluidic devices supporting bulk acoustic standing waves for sheathless focusing of particles.
Journal of Visualized Experiments: JoVE, (109), 53861. DOI:
10.3791/53861. PMID: 27022681; PMCID: PMC4828217.
[25] Hamidi, H., Haddad, A. S., Otumudia, E. W., Rafati, R., Mohammadian, E., Azdarpour, A., ... & Tanujaya, E. (2021). Recent applications of ultrasonic waves in improved oil recovery: A review of techniques and results.
Ultrasonics,
110, 106288. DOI:
https://doi.org/10.1016/j.ultras.2020.106288.
[26] Naderi, K., & Babadagli, T. (2010). Influence of intensity and frequency of ultrasonic waves on capillary interaction and oil recovery from different rock types.
Ultrasonics sonochemistry,
17(3), 500-508. DOI:
https://doi.org/10.1016/j.ultsonch.2009.10.022.
[27] Abdulfatah, H. K. (2018, September). Application of ultrasonic waves in enhancing oil recovery in secondary recovery phase. In
SPE Annual Technical Conference and Exhibition? (p. D023S099R006). SPE. DOI:
https://doi.org/10.2118/194031-STU.
[28] Li, X., Pu, C., Chen, X., Huang, F., & Zheng, H. (2021). Study on frequency optimization and mechanism of ultrasonic waves assisting water flooding in low-permeability reservoirs. Ultrasonics Sonochemistry, 70, 105291. DOI:
https://doi.org/10.1016/j.ultsonch.2020.105291.
[29] Hamidi, H., Rafati, R., Junin, R. B., & Manan, M. A. (2012). A role of ultrasonic frequency and power on oil mobilization in underground petroleum reservoirs. Journal of Petroleum Exploration and Production Technology, 2, 29-36. DOI:
https://doi.org/10.1007/s13202-012-0018-x.
[30] Alhomadhi, E., Amro, M., & Almobarky, M. (2014). Experimental application of ultrasound waves to improved oil recovery during waterflooding. Journal of King Saud University-Engineering Sciences, 26(1), 103-110. DOI:
https://doi.org/10.1016/j.jksues.2013.04.002.
[31] Ragab, A. M., & Fouad Snosy, M. (2015, October). The effect of ultrasonic waves of EOR on the relative permeability curves. In SPE Kuwait Oil and Gas Show and Conference (pp. SPE-175410). SPE. DOI:
https://doi.org/10.2118/175410-MS.
[33] Dehshibi, R. R., Mohebbi, A., Riazi, M., & Niakousari, M. (2018). Experimental investigation on the effect of ultrasonic waves on reducing asphaltene deposition and improving oil recovery under temperature control. Ultrasonics Sonochemistry, 45, 204-212. DOI:
https://doi.org/10.1016/j.ultsonch.2018.03.023.
[34] Khalili, Y., Hashemizadeh, A., & Yasemi, S. (2022). Study the efficiency of different polymers used in polymer injection (flooding) operations in enhanced oil recovery of heavy oil reservoirs. Basparesh, 12(1), 14-24. DOI:
10.22063/basparesh.2021.2857.1545.
[35] Shafiai, S. H., & Gohari, A. (2020). Conventional and electrical EOR review: the development trend of ultrasonic application in EOR. Journal of Petroleum Exploration and Production Technology, 10(7), 2923-2945. DOI:
https://doi.org/10.1007/s13202-020-00929-x.
[37] Mohammadian, E., Junin, R., Rahmani, O., & Idris, A. K. (2013). Effects of sonication radiation on oil recovery by ultrasonic waves stimulated water-flooding. Ultrasonics, 53(2), 607-614. DOI:
https://doi.org/10.1016/j.ultras.2012.10.006.
[38] Hamidi, H., Mohammadian, E., Rafati, R., Azdarpour, A., & Ing, J. (2015). The effect of ultrasonic waves on the phase behavior of a surfactant–brine–oil system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 482, 27-33. DOI:
https://doi.org/10.1016/j.colsurfa.2015.04.009.
[39] Hiedemann, E. A. (1954). Metallurgical effects of ultrasonic waves. the Journal of the Acoustical Society of America, 26(5), 831-842. DOI:
https://doi.org/10.1121/1.1907426.
[40] Hamidi, H., Mohammadian, E., Junin, R., Rafati, R., Azdarpour, A., Junid, M., & Savory, R. M. (2014). The effect of ultrasonic waves on oil viscosity. Petroleum Science and Technology, 32(19), 2387-2395. DOI:
https://doi.org/10.1080/10916466.2013.831873.
[41] Fox, F. E., Herzfeld, K. F., & Rock, G. D. (1946). The effect of ultrasonic waves on the conductivity of salt solutions. Physical review, 70(5-6), 329.
https://doi.org/10.1103/PhysRev.70.329.
[43] Nazari, M., & Eteghadipour, M. (2017). Impacts of ultrasonic waves on seeds: a mini- review. Agricultural Research & Technology: Open Access Journal, 6(3), 1-6. ISSN: 2471-6774.
[45] Yasemi, S., Khalili, Y., Sanati, A., & Bagheri, M. (2023). Carbon capture and storage: Application in the oil and gas industry. Sustainability, 15(19), 14486. DOI:
https://doi.org/10.3390/su151914486.
[46] Ahmadi, M., & Chen, Z. (2020). Challenges and future of chemical assisted heavy oil recovery processes. Advances in colloid and interface science, 275, 102081. DOI:
https://doi.org/10.1016/j.cis.2019.102081.
[47] Malozyomov, B. V., Martyushev, N. V., Kukartsev, V. V., Tynchenko, V. S., Bukhtoyarov, V. V., Wu, X., ... & Kukartsev, V. A. (2023). Overview of methods for enhanced oil recovery from conventional and unconventional reservoirs. Energies, 16(13), 4907. DOI:
https://doi.org/10.3390/en16134907.
[48] Abuhasel, K., Kchaou, M., Alquraish, M., Munusamy, Y., & Jeng, Y. T. (2021). Oily wastewater treatment: Overview of conventional and modern methods, challenges, and future opportunities. Water, 13(7), 980. DOI:
https://doi.org/10.3390/w13070980.
[49] Pal, S., Mushtaq, M., Banat, F., & Al Sumaiti, A. M. (2018). Review of surfactant-assisted chemical enhanced oil recovery for carbonate reservoirs: challenges and future perspectives. Petroleum Science, 15, 77-102. DOI:
https://doi.org/10.1007/s12182-017-0198-6.
[50] Mullakaev, M. S., Abramov, V. O., & Abramova, A. V. (2015). Development of ultrasonic equipment and technology for sound stimulation and enhanced oil recovery. Journal of petroleum science and engineering, 125, 201-208. DOI:
https://doi.org/10.1016/j.petrol.2014.10.024.
[51] Li, P., Ma, C., Chen, Z., Wang, H., Wang, Y., & Bai, H. (2023). A Review: Study on the Enhancement Mechanism of Heat and Moisture Transfer in Deformable Porous Media. Processes, 11(9), 2699. DOI:
https://doi.org/10.3390/pr11092699.
[54] Dengaev, A. V., Khelkhal, M. A., Getalov, A. A., Baimukhametov, G. F., Kayumov, A. A., Vakhin, A. V., & Gafurov, M. R. (2023). Innovations in Oil Processing: Chemical Transformation of Oil Components through Ultrasound Assistance. Fluids, 8(4), 108. DOI:
https://doi.org/10.3390/fluids8040108.
[55] Rehman, M. M., & Meribout, M. (2012). Conventional versus electrical enhanced oil recovery: a review. Journal of Petroleum Exploration and Production Technology, 2, 169-179. DOI:
https://doi.org/10.1007/s13202-012-0035-9.
[57] Wang, J., Lai, Y., Wang, X., & Ji, H. (2024). Advances in ultrasonic oily sludge treatment: mechanisms, industrial applications, and integration with combined treatment technologies. Environmental Science and Pollution Research, 31(10), 14466-14483. DOI:
https://doi.org/10.1007/s11356-024-32089-4.
[58] Wang, Z., & Gu, S. (2018). State-of-the-art on the development of ultrasonic equipment and key problems of ultrasonic oil prudction technique for EOR in China. Renewable and Sustainable Energy Reviews, 82, 2401-2407. DOI:
https://doi.org/10.1016/j.rser.2017.08.089.
[59] Taheri-Shakib, J., Shekarifard, A., & Naderi, H. (2017). The experimental investigation of effect of microwave and ultrasonic waves on the key characteristics of heavy crude oil. Journal of analytical and applied pyrolysis, 128, 92-101. DOI:
https://doi.org/10.1016/j.jaap.2017.10.021.
[60] Naderi, K., & Babadagli, T. (2008, October). Effect of ultrasonic intensity and frequency on oil/heavy- oil recovery from different wettability rocks. In SPE International Thermal Operations and Heavy Oil Symposium (pp. SPE-117324). SPE. DOI:
https://doi.org/10.2118/117324-MS.
[61] Luo, X., Gong, H., He, Z., Zhang, P., & He, L. (2021). Recent advances in applications of power ultrasound for petroleum industry. Ultrasonics Sonochemistry, 70, 105337. DOI:
https://doi.org/10.1016/j.ultsonch.2020.105337.
[62] Hamida, T., & Babadagli, T. (2005, October). Effects of ultrasonic waves on immiscible and miscible displacement in porous media. In SPE Annual Technical Conference and Exhibition? (pp. SPE-95327). SPE. DOI:
https://doi.org/10.2118/95327-MS.
[63] Amro, M. M., Al-Mobarky, M. A., & Al-Homadhi, E. S. (2007, March). Improved oil recovery by application of ultrasound waves to waterflooding. In SPE middle east oil and gas show and conference (pp. SPE-105370). SPE. DOI:
https://doi.org/10.2118/105370-MS.
[64] Arabzadeh, H., & Amani, M. (2017). Application of a novel ultrasonic technology to improve oil recovery with an environmental viewpoint. J Pet Environ Biotechnol, 8(02), 1-5. DOI:
10.4172/2157-7463.1000323.
[66] Naderi, K., & Babadagli, T. (2008). Clarifications on oil/heavy oil recovery under ultrasonic radiation through core and 2D visualization experiments. Journal of Canadian Petroleum Technology, 47(11). DOI:
https://doi.org/10.2118/08-11-56.
[68] Abramov, V. O., Mullakaev, M. S., Abramova, A. V., Esipov, I. B., & Mason, T. J. (2013). Ultrasonic technology for enhanced oil recovery from failing oil wells and the equipment for its implemention. Ultrasonics sonochemistry, 20(5), 1289-1295. DOI:
https://doi.org/10.1016/j.ultsonch.2013.03.004.
[69] Mohammadian, E., Shirazi, M. A., & Idris, A. K. (2011, September). Enhancing oil recovery through application of ultrasonic assisted waterflooding. In SPE Asia Pacific Oil and Gas Conference and Exhibition (pp. SPE-145014). SPE. DOI:
https://doi.org/10.2118/145014-MS.
[70] Juliano, P., Swiergon, P., Mawson, R., Knoerzer, K., & Augustin, M. A. (2013). Application of ultrasound for oil separation and recovery of palm oil. Journal of the American Oil Chemists' Society, 90(4), 579-588. DOI:
https://doi.org/10.1007/s11746-012-2191-y.
[71] Zhang, H., Gao, C., Zhang, H., Song, N., & Cao, Q. (2024). Revisiting the Application of Ultrasonic Technology for Enhanced Oil Recovery: Mechanisms and Recent Advancements. Energies, 17(14), 3517. DOI:
https://doi.org/10.3390/en17143517.
[72] Hamida, T., & Babadagli, T. (2005, April). Effect of ultrasonic waves on the capillary-imbibition recovery of oil. In SPE Asia Pacific Oil and Gas Conference and Exhibition (pp. SPE-92124). SPE. DOI:
https://doi.org/10.2118/92124-MS.
[73] Gao, Y., Ding, R., Wu, S., Wu, Y., Zhang, Y., & Yang, M. (2015). Influence of ultrasonic waves on removing different oil components from oily sludge. Environmental technology, 36(14), 1771-1775. DOI:
https://doi.org/10.1080/09593330.2015.1010594.
[75] Khalili, Y., & Ahmadi, M. (2023). Reservoir modeling & simulation: Advancements, challenges, and future perspectives. Journal of Chemical and Petroleum Engineering, 57(2), 343-364. DOI:
10.22059/jchpe.2023.363392.1447.
[76] Elwegaa, K., Emadi, H., Soliman, M., Gamadi, T., & Elsharafi, M. (2019). Improving oil recovery from shale oil reservoirs using cyclic cold carbon dioxide injection–An experimental study. Fuel, 254, 115586. DOI:
https://doi.org/10.1016/j.fuel.2019.05.169.
[77] Huang, X., Zhou, C., Suo, Q., Zhang, L., & Wang, S. (2018). Experimental study on viscosity reduction for residual oil by ultrasonic. Ultrasonics Sonochemistry, 41, 661-669. DOI:
https://doi.org/10.1016/j.ultsonch.2017.09.021.
[78] Saravanan, A., Kumar, P. S., Vardhan, K. H., Jeevanantham, S., Karishma, S. B., Yaashikaa, P. R., & Vellaichamy, P. (2020). A review on systematic approach for microbial enhanced oil recovery technologies: Opportunities and challenges. Journal of Cleaner Production, 258, 120777. DOI:
https://doi.org/10.1016/j.jclepro.2020.120777.
[79] Mullakaev, M. S., Abramov, V. O., & Abramova, A. V. (2017). Ultrasonic piezoceramic module and technology for stimulating low-productivity wells. Journal of Petroleum Science and Engineering, 158, 529-534. DOI:
https://doi.org/10.1016/j.petrol.2017.08.067.
[80] Samanta, A. S., & Arora, R. (2018). Structural analysis of horn used in ultrasonic enhanced oil recovery. Indian Journal of Science and Technology, 11(28), 1-10. DOI:
10.17485/ijst/2018/v11i28/130781, July 2018.
[81] Mullakaev, M. S., Saltykov, Y. A., Saltykov, A. A., & Mullakaev, R. M. (2023, October). Experience of Ultrasonic Technology Application in the Samotlor Field Wells (Western Syberia). In Conference on Physical and Mathematical Modeling of Earth and Environment Processes (pp. 191-196). Cham: Springer Nature Switzerland. DOI:
https://doi.org/10.1007/978-3-031-54589-4_20.
[82] Skadsem, H. J., Gardner, D., Jiménez, K. B., Govil, A., Palacio, G. O., & Delabroy, L. (2021). Study of ultrasonic logs and seepage potential on sandwich sections retrieved from a north sea production well. SPE Drilling & Completion, 36(04), 976-990. DOI:
https://doi.org/10.2118/206727-PA.
[83] Adenutsi, C. D., Turkson, J. N., Wang, L., Zhao, G., Zhang, T., Quaye, J. A., ... & Sokama-Neuyam, Y. A. (2023). Review on Potential Application of Saponin-Based Natural Surfactants for Green Chemical Enhanced Oil Recovery: Perspectives and Progresses. Energy & Fuels, 37(13), 8781-8823. DOI:
https://doi.org/10.1021/acs.energyfuels.3c00627.
[84] Kamkar, A., Hosseini, H., Norouzi-Apourvari, S., & Schaffie, M. (2021). Insight into the Synergic Effect of Ultrasonic Waves, SDS Surfactant, and Silica Nanoparticles on Wettability Alteration of Carbonate Rocks. Arabian Journal for Science and Engineering, 1-14. DOI:
https://doi.org/10.1007/s13369-021-06356-2.
[85] Jeong, C., Kallivokas, L. F., Huh, C., & Lake, L. W. (2011, October). Maximization of oil mobility within a hydrocarbon reservoir for elastic wave-based enhanced oil recovery. In SPE Annual Technical Conference and Exhibition? (pp. SPE-147150). SPE. DOI:
https://doi.org/10.2118/147150-MS.
[86] Deng, X., Tariq, Z., Murtaza, M., Patil, S., Mahmoud, M., & Kamal, M. S. (2021). Relative contribution of wettability Alteration and interfacial tension reduction in EOR: A critical review. Journal of Molecular Liquids, 325, 115175. DOI:
https://doi.org/10.1016/j.molliq.2020.115175.
[87] Zhao, L., Yuan, H., Yang, J., Han, D. H., Geng, J., Zhou, R., ... & Yao, Q. (2017). Mobility effect on poroelastic seismic signatures in partially saturated rocks with applications in timelapse monitoring of a heavy oil reservoir. Journal of Geophysical Research: Solid Earth, 122(11), 8872-8891. DOI:
https://doi.org/10.1002/2017JB014303.
[88] Jiang, C., Yang, W., Duan, M., Wang, G., & Xu, Z. (2022). Pore structure alteration and permeability enhancement of shale under cyclic thermal impacts. Powder Technology, 396, 385-393. DOI:
https://doi.org/10.1016/j.powtec.2021.11.010.
[89] Shen, L., Pang, S., Zhong, M., Sun, Y., Qayum, A., Liu, Y., ... & Ren, X. (2023). A comprehensive review of ultrasonic assisted extraction (UAE) for bioactive components: Principles, advantages, equipment, and combined technologies. Ultrasonics Sonochemistry, 106646. DOI:
https://doi.org/10.1016/j.ultsonch.2023.106646.
[90] Abdulkareem, F. A., & Padmanabhan, E. (2021). Applied techniques for residual oil recovery from source rocks: A review of current challenges and possible developments. The Canadian Journal of Chemical Engineering, 99(1), 251-267. DOI:
https://doi.org/10.1002/cjce.23838.
[91] Fallah Kelarijani, A., Gholipour Zanjani, N., & Kamran Pirzaman, A. (2020). Ultrasonic assisted transesterification of rapeseed oil to biodiesel using nano magnetic catalysts. Waste and biomass valorization, 11(6), 2613-2621. DOI:
https://doi.org/10.1007/s12649-019-00593-1.
[92] Kumar T, A., Pareek, S., Kaur, R., Sagar, N. A., Singh, L., Sami, R., ... & Rahman, M. M. (2022). Optimization of ultrasonic-assisted enzymatic extraction of freeze-dried sea buckthorn (Hippophae rhamnoides L.) berry oil using response surface methodology. Sustainability, 14(17), 10849. DOI:
https://doi.org/10.3390/su141710849.
[93] Adeyemi, I., Meribout, M., & Khezzar, L. (2022). Recent developments, challenges, and prospects of ultrasound-assisted oil technologies. Ultrasonics Sonochemistry, 82, 105902. DOI:
https://doi.org/10.1016/j.ultsonch.2021.105902.
[94] Struhs, E., Hansen, S., Mirkouei, A., Ramirez-Corredores, M. M., Sharma, K., Spiers, R., & Kalivas, J. H. (2021). Ultrasonic-assisted catalytic transfer hydrogenation for upgrading pyrolysis-oil. Ultrasonics Sonochemistry, 73, 105502. DOI:
https://doi.org/10.1016/j.ultsonch.2021.105502.
[95] Wang, A., Chen, C., Liu, C., Ma, J., Lin, T., Ding, M., & Xu, H. (2024). Critical review on advances and perspectives of ultrasound assisted membrane technologies for water purification. Chemical Engineering Journal, 148873. DOI:
https://doi.org/10.1016/j.cej.2024.148873.
[96] Khan, M. I., Shixing, W., Ullah, E., Sajjad, M., Zhang, L., & Fu, L. (2024). Enhanced metal recovery using ultrasound assisted leaching (UAL). An overview. Journal of Molecular Liquids, 125545. DOI:
https://doi.org/10.3390/molecules29091984.
[97] Li, X., Zheng, L., Li, G., Pu, J., Zhang, T., & Huang, F. (2024). Enhanced oil recovery in tight reservoirs by ultrasonic-assisted CO2 flooding: Experimental study and molecular dynamics simulation. Fuel, 378, 132889. DOI:
https://doi.org/10.1016/j.fuel.2024.132889.
[98] Alhalafi, M. H., Rizk, S. A., Al-Malki, E. S., & Algohary, A. M. (2024). Microwave-ultrasonic assisted lignin extraction to synthesize new nano micellar organometallic surfactants for refining oily wastewater. Bioresources and Bioprocessing, 11(1), 46. DOI:
https://doi.org/10.1186/s40643-024-00761-9.
[99] Yu, R., Fu, G., Li, X., Xi, X., Chen, X., Chen, L., ... & Zhu, X. (2024). Ultrasonic-assisted preparation of SBS modified asphalt: Cavitation bubble numerical simulation and rheological properties. Ultrasonics Sonochemistry, 108, 106982. DOI:
https://doi.org/10.1016/j.ultsonch.2024.106982.
[100] Drannikov, A. A., Trusova, M. E., & Di Martino, A. (2024). Reviewing twenty years of patents on ultrasonic-assisted pectin extraction from food and food waste. Chimica Techno Acta. 2024. Vol. 11.№ 2, 11(2). DOI:
10.15826/chimtech.2024.11.2.13.
[101] Suttiarporn, P., Seangwattana, T., Srisurat, T., Kongitthinon, K., Chumnanvej, N., & Luangkamin, S. (2024). Enhanced extraction of clove essential oil by ultrasound and microwave assisted hydrodistillation and their comparison in antioxidant activity. Current Research in Green and Sustainable Chemistry, 8, 100411. DOI:
https://doi.org/10.1016/j.crgsc.2024.100411.
[102] Erturun, Ö. F., Tekaüt, H., Çiçek, A., Uçak, N., Namlu, R. H., Lotfi, B., & Kılıç, S. E. (2024). An experimental study on ultrasonic-assisted drilling of Inconel 718 under different cooling/lubrication conditions. The International Journal of Advanced Manufacturing Technology, 130(1), 665-682. DOI:
https://doi.org/10.1007/s00170-023-12735-w.
[103] Shao, J., Ding, D., Zhu, Z., & Chen, X. (2024). Ultrasound◻assisted extraction of sumac fruit oil and analysis of its fatty acid composition. Journal of Food Science. DOI:
https://doi.org/10.1111/1750-3841.17452.
[104] Joco, R. A., Lavarias, J. A., Peneyra, R. G., & Somera, C. G. (2024). Recent Development on the Extraction Process of Plants Essential Oil and its Effect on Chemical Composition: A Review. Advanced Journal of Graduate Research, 14(1), 9-20. DOI:
https://doi.org/10.21467/ajgr.14.1.9-20.
[105] Mierez, J., AlTammar, M. J., & Alruwaili, K. M. (2023, June). Review of Recent Research Related to Ultrasonic Technologies for Well Productivity Enhancement. In ARMA US Rock Mechanics/Geomechanics Symposium (pp. ARMA-2023). ARMA. DOI:
https://doi.org/10.56952/ARMA-2023-0477.