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Abstract 
In recent years, biodiesel has been considered as a good alternative of diesel fuels. Density and 

viscosity are two important properties of these fuels. In this study, density and kinematic viscosity of 

biodiesel-diesel blends were estimated by using artificial neural network (ANN). A three-layer feed 

forward neural network with Levenberg-Marquard (LM) algorithm was used for learning empirical data 

(previous studies data and this study empirical data). Input data for estimating density and kinematic 

viscosity includes components volume fraction, temperature and pure component properties (pure 

density at 293.15 K and pure kinematic viscosity at 313.15 K). Results of neural network simulation for 

density and kinematic viscosity showed a high accuracy (mean relative error for density and kinematic 

viscosity are 0.021% and 0.73%, respectively). 
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1. Introduction 
   Reducing energy sources and increasing 

cost of energy persuade humans to find new 

and renewable sources [1, 2]. Biodiesel is 

one of the most important biofuels that has 

been considered recently. This fuel is 

produced by transesterification of vegetable 

oils or animal fats with alcohol at presence 

of basic, acidic or enzymatic catalysts [3]. 

   Biodiesel fuel has many advantages and 

uses. Using this fuel causes to reduce 

release of greenhouse gases and 

environment pollutant gases. 

   This fuel is biodegradable, non-toxic and 

renewable. Compared with diesel, biodiesel 

has higher cetane number and flash 

temperature. Also its combust ion releases 

lowers amount of hydrocarbons, carbon 

monoxide and suspended particles. 

Biodiesel completely dissolves in diesel so 

they can combine in each percent with each 

other. Although biodiesel and diesel have 

differences, biodiesel can be used pure or 

blend with diesel, without any changes in 

diesel equipment directly [4-7]. 

   Viscosity and density are two basic 

parameters of diesel engines fuels [7]. Fuels 

with higher viscosity need more energy for 

pumping [8] and also their sparing is harder, 

while their efficiency is lower [8, 9]. 

Density is the other important parameter 

that its increment has a positive effect on 

output power because fuel injection system 

measures fuel on the base of volume, so 

more mass is injected [10]. 

Different empirical and theoretical studies 

[5-9, 11-26] on density and viscosity of 

biodiesel-diesel blend in different 

temperatures has been done and many 

studies are presented for predicting density 

and viscosity. A summary of presented 

equations is available in Table 1. Most of 

presented equations have some constants 

that according to mixture components 

(biodiesel and diesel) properties can be 

estimated. 

   Artificial neural network has been used 

for estimating physical and chemical data in 

many studies recently [27-42]. 
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Table1: Presented equations for predicting 

density and viscosity of biodiesel-diesel blend at 

different temperatures 
Source Eq. Correlation 

Pure correlation (temperature dependency) 

[5, 6, 16-18] (1)  bTa   

[22] (2)  
2

ln 
T

C

T

B
A   

[23] (3)  
CT

B
A


ln 

 

Mixture correlation (constant temperature) 

[19] (4) 2211  vvm 

 
[19] (5)  1 bavm 

 
[25] (6)      2211 ln ln ln  vvm 

 

[25] (7) 

3

3
1

22
3

1

11 









  vvm  

[25] (8) cbvavm  1
2
1

 
Combined correlation 

[20] (9)   TV
 

[8]  (10)   VTTV   ln ln 

 
[20] (11)  

2
ln ln 

T

V

T
V


 

 

[20] (12)  
T

V

T


  ln ln 

 

[20] (13)  
2

ln ln 
T

V

T


 

 

[24] (14)  
T

V

T
V


  ln ln 

 

[26] (15)  
T

V


  ln ln 
 

 

   In the current study, several biodiesels 

include soybean oil biodiesel (SOB), canola 

oil biodiesel (COB), sunflower oil biodiesel 

(SFOB), waste oil biodiesel (WOB) and 

edible tallow biodiesel (ETB) were 

produced and the density and kinematic 

viscosity of them and their blends with 

diesel were measured at different 

temperatures and volume fractions. Then, 

artificial neural network was used to 

estimate these properties. To obtain ANN 

models for density and kinematic viscosity, 

existent data in different literature [3, 16, 17 

and 20] and also the measured data from our 

experiments were used. Density and 

kinematic viscosity of biodiesel-diesel 

blends were considered as a function of 

temperature, pure biodiesel and diesel 

properties and volume fraction of biodiesel. 

Consequently, it was observed that ANN 

has higher accuracy compared with 

previous methods.   

 

2. Experimental data 
2.1. Biodiesel production 

   Four different vegetable oils (soybean oil, 

canola oil, sunflower oil and waste cooking 

oil) and edible tallow were used to produce 

biodiesel. Because of high acid numbers of 

waste cooking oil and edible tallow (1.23 

and 9.52 mg KOH/g, respectively), a pre-

esterification step was done on them to 

decrease acid number to less than 1 mg 

KOH/g. Pre-esterification was done in the 

presence of H2SO4 (0.5 wt.%) as a catalyst, 

molar ratio of oil/alcohol 1:18 and a 

temperature of 65 C during 5 h [43]. Then, 

by transesterification reaction, five oil 

samples converted to biodiesel. Oil/alcohol 

molar ratio of 1:6 and potassium hydroxide 

as a catalyst (1 wt.% of oil) was selected. 

Reaction was done at 60 C during 4 h 

under total reflux condition and stirring. 

 

2.2. Density measurement 

   The hydrometer method described in 

ASTM Standard D1298 was used for 

measuring density of pure biodiesel fuels 

and biodiesel-diesel blends in the ambient 

temperature (AT), 298.15 K, 313.15 K, 

323.15 K, 333.15 K, 343.15 K and 353.15 

K. Lin-Tech art. no. 600 702-4 glass 

hydrometers with accuracy of three decimal 

and a Lin-Tech art. LT/DB-55100/M 

density bath with ±0.01°C temperature 

controller were used in the measurement. 

The test was repeated three times for each 

sample and the average of results was 

reported. 

   Table 2 shows measured density of pure 

components (biodiesels and diesel) at 

different temperatures. Also biodiesel-diesel 

blends density with volume fractions of 0.8, 

0.6, 0.4 and 0.2 are presented in Table 3. 

According to these tables density is 

increases by temperature reducing and 

biodiesel volume fraction increases. 
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Table 2: Density and kinematic viscosity of pure biodiesels and diesel 

Temperature (K) 
 

SOB COB SFOB WOB ETB Diesel 

  
  (g/cm

3
) 

293.15 
 

0.8825 0.8805 0.8830 0.8765 0.8700 0.8265 

298.15 
 

0.8780 0.8765 0.8790 0.8720 0.8656 0.8231 

313.15 
 

0.8680 0.8660 0.8685 0.8615 0.8555 0.8125 

323.15 
 

0.8605 0.8590 0.8615 0.8545 0.8465 0.8060 

333.15 
 

0.8540 0.8520 0.8545 0.8460 0.8400 0.7995 

343.15 
 

0.8450 0.8435 0.8460 0.8390 0.8335 0.7920 

353.15 
 

0.8378 0.8365 0.8390 0.8310 0.8265 0.7865 

  
  (cSt) 

313.15   4.404 4.791 4.439 4.767 5.034 2.932 

323.15   3.637 3.953 3.656 3.894 4.113 2.445 

333.15   3.085 3.320 3.080 3.280 3.433 2.077 

343.15   2.659 2.848 2.641 2.803 2.901 1.803 

353.15   2.331 2.465 2.293 2.417 2.501 1.587 

363.15   2.124 2.189 2.016 2.121 2.179 1.407 

 

2.3. Kinematic viscosity measurement 

   Measuring of kinematic viscosity for each 

sample from 313.15 K to 363.15 K by steps 

of 10 K was done according to ASTM 

Standard D445. Cannon-Fenske type glass 

capillary viscometers (size no. 75) and a 

Lin-Tech art. LT/VB-37000/M viscosity 

bath with ±0.01 °C temperature control 

were used. To determine kinematic 

viscosity, the efflux time that is the time for 

a known volume of liquid flowing under 

gravity to pass through the viscometer tube 

was multiplied by the viscometer constant. 

Viscometer constant is obtained from 

calibration curve provided by manufacture 

at 313.15 K and 373.15 K that it was 

linearly interpolated to other temperatures. 

Such as density the test was repeated three 

times for each sample and the results were 

averaged. 

   Kinematic viscosity of pure component 

(biodiesels and diesel) and also biodiesel-

diesel blends at different temperatures are 

shown in Tables 2 and 3, respectively. 

Values of these tables are shown similar 

trend between kinematic viscosity and 

density under temperature and volume 

fraction changes of biodiesel. 

 

3. Methodology 
   Artificial neural network has a high ability 

for learning and organizing of nonlinear and 

complex correlation. In this study for 

estimating of density and kinematic 

viscosity of biodiesel-diesel blends ANN 

has been used. A brief review on ANN that 

used in this work was done by 

Eslamloueyan and Khademi [40].  

 

3.1. Analyzing and using data 

   In this work for density estimation, 

reported data in literatures [16, 17 and 20] 

(262 data points) and measured data in this 

study (181 data points) have been used. 

From density data 70% (311 data points) for 

training, 15% (66 data points) for validation 

and 15% (66 data points) for network 

testing have been selected randomly. As 

clearly seen from Eqs. (1), (4) and (9), 

mixture density is dependent to temperature, 

components volume fraction and pure 

components density. Usually density was 

determined at 293.15 K, so in this model 

density expressed as a function of 

temperature, components volume fraction 

(only volume fraction of one component is 

sufficient, because 12 1 vv  ) and density of 

pure components at 293.15 K: 

 

  (16)                                   211  ,,v,Tfm   

 

   Also for estimating of kinematic viscosity, 

reported data of literatures [3, 16, 17 and 

20] (367 data points) and measured data on 

this study (156 data points) have been used. 

From all kinematic viscosity data randomly 
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70% (367 data points) for training, 15% (78 

data point) for validation and 15% (78 data 

points) for network testing have been 

selected. According to Eqs. (2), (3), (6), (7) 

and (10) to (15), it was shown clearly that 

kinematic viscosity of biodiesel-diesel 

blends is depend on temperature, 

components volume fraction and kinematic 

viscosity of pure components.  

 

 
Table 3: Density and kinematic viscosity of biodiesel-diesel blends 

Biodiesel Volume fraction 
 

Temperature (K) 

   
AT 298.15 313.15 323.15 333.15 343.15 353.15 

   
  (g/cm

3
) 

SOB 0.8 
 

0.8740
a
 0.8669 0.8570 0.8500 0.8410 0.8345 0.8280 

 
0.6 

 
0.8610

b
 0.8570 0.8445 0.8380 0.8310 0.8245 0.8175 

 
0.4 

 
0.8470

c
 0.8440 0.8335 0.8270 0.8200 0.8130 0.8065 

 
0.2 

 
0.8360

d
 0.8340 0.8235 0.8170 0.8100 0.8035 0.7970 

COB 0.8 
 

0.8710
e
 0.8659 0.8555 0.8465 0.8395 0.8330 0.8265 

 
0.6 

 
0.8600

f
 0.8560 0.8435 0.8370 0.8300 0.8235 0.8165 

 
0.4 

 
0.8475

g
 0.8440 0.8340 0.8270 0.8200 0.8135 0.8070 

 
0.2 

 
0.8360

h
 0.8335 0.8235 0.8165 0.8100 0.8035 0.7965 

SFOB 0.8 
 

0.8720
e
 0.8671 0.8570 0.8500 0.8415 0.8345 0.8280 

 
0.6 

 
0.8630

i
 0.8570 0.8450 0.8380 0.8315 0.8250 0.8180 

 
0.4 

 
0.8470

j
 0.8445 0.8340 0.8270 0.8205 0.8135 0.8070 

 
0.2 

 
0.8370

k
 0.8340 0.8240 0.8170 0.8105 0.8035 0.7970 

WOB 0.8 
 

0.8690
l
 0.8624 0.8520 0.8435 0.8365 0.8295 0.8230 

 
0.6 

 
- 0.8535 0.8415 0.8345 0.8275 0.8210 0.8140 

 
0.4 

 
0.8465

m
 0.8425 0.8320 0.8255 0.8185 0.8120 0.8055 

 
0.2 

 
0.8360

c
 0.8330 0.8230 0.8160 0.8095 0.8025 0.7960 

ETB 0.8 
 

0.8635
i
 0.8575 0.8455 0.8385 0.8320 0.8250 0.8180 

 
0.6 

 
0.8535

g
 0.8480 0.8380 0.8310 0.8240 0.8175 0.8105 

 
0.4 

 
0.8430

n
 0.8400 0.8300 0.8230 0.8165 0.8095 0.8030 

 
0.2 

 
0.8345

o
 0.8320 0.8220 0.8150 0.8085 0.8015 0.7950 

   
Temperature (K) 

    
313.15 323.15 333.15 343.15 353.15 363.15 

    
 

  (cSt) 

SOB 0.8 
  

3.952 3.294 2.787 2.402 2.103 1.913 

 

0.6 
  

3.658 3.060 2.568 2.203 1.929 1.720 

 

0.4 
  

3.375 2.814 2.389 2.061 1.826 1.610 

 

0.2 
  

3.085 2.566 2.227 1.911 1.701 1.519 

COB 0.8 
  

4.313 3.569 2.975 2.546 2.208 1.945 

 

0.6 
  

3.839 3.199 2.691 2.389 2.002 1.761 

 

0.4 
  

3.502 2.918 2.469 2.138 1.870 1.654 

 

0.2 
  

3.160 2.636 2.227 1.920 1.677 1.506 

SFOB 0.8 
  

4.045 3.358 2.846 2.435 2.122 1.866 

 

0.6 
  

3.641 3.004 2.548 2.215 1.910 1.687 

 

0.4 
  

3.356 2.787 2.364 2.042 1.781 1.575 

 

0.2 
  

3.013 2.511 2.125 1.834 1.606 1.424 

WOB 0.8 
  

4.333 3.560 2.981 2.559 2.217 1.951 

 

0.6 
  

3.835 3.168 2.672 2.297 2.008 1.757 

 

0.4 
  

3.473 2.884 2.434 2.118 1.840 1.612 

 

0.2 
  

3.176 2.639 2.238 1.945 1.693 1.544 

ETB 0.8 
  

4.516 3.721 3.092 2.631 2.276 2.009 

 

0.6 
  

4.042 3.337 2.786 2.375 2.075 1.813 

 

0.4 
  

3.590 2.957 2.495 2.135 1.861 1.643 

 

0.2 
  

3.187 2.643 2.233 1.925 1.686 1.477 

Ambient Temperature: 
a
 288.35 K, 

b
 292.35 K, 

c
 293.35 K, 

d
 294.75 K, 

e
 290.95 K, 

f
 291.95 K, 

g
 292.75 K, 

h
 

293.95 K,  
i
 290.55 K, 

j
 293.55 K, 

k
 292.95 K, 

l
 288.75 K, 

m
 292.45 K, 

n
 293.75 K, 

o
 294.15 K 
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Figure1: Schematic of three-layer ANN 

 

Table4: Statistical data for estimating density and kinematic viscosity ANN model 

 
 1v
 11 or  

 22 or  
 T (K) mm or  

 

 
Density (g/cm

3
) 

Minimum 0.00 0.8700 0.8265 288.35 0.7779 

Maximum 1.00 0.8869 0.8853 373.15 0.8869 

Average 0.49 0.8793 0.8511 328.80 0.8388 

Median 0.49 0.8816 0.8344 333.15 0.8371 

Standard deviation 0.34 0.0063 0.0261 25.66 0.0245 

 
Kinematic viscosity (cSt) 

Minimum 0.00 2.872 2.650 268.15 1.140 

Maximum 1.00 7.030 5.140 373.15 12.320 

Average 0.49 4.652 3.159 326.32 3.606 

Median 0.49 4.439 2.932 323.15 2.957 

Standard deviation 0.33 1.095 0.697 28.54 2.193 
 

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

bj1
 

bj2
 

Input Layer                   Hidden Layer                      Output Layer 

(Density or viscosity)m 

(Volume fraction)1 

Temperature 

(Density or viscosity)1 

(Density or viscosity)2 
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Usually kinematic viscosity measured at 

313.15 K, so a model for kinematic 

viscosity has been presented that considered 

as a function of temperature, components 

volume fraction and kinematic viscosity of 

pure components at 313.15 K: 

 

  (17)                                   211  ,,v,Tfm   
 

   In Table 4 statistical data (minimum, 

maximum, average, median and standard 

deviation) of density and kinematic 

viscosity ANNs are given. 

 

3.2. Neural network training 

   After determining of input data, designing 

of ANN can be started. Here a three-layer 

feed forward network has been used. 

Schematic of one three-layer ANN has been 

shown in Figure1. Number of neurons in 

hidden layer should be minimum value and 

if training error of network with this number 

of neurons be higher than desired value, 

number of neurons increased one by one to 

receive a value lower than desired value 

[44]. 

   By applying neural network on density 

data, optimum number of neurons at hidden 

layer is equal to 14. Same result by applying 

kinematic viscosity data is obtained (hidden 

neurons are equal to 14). At the obtained 

models in hidden and output layers transfer 

function of „tansig‟ and „purelin‟ are used, 

respectively. These functions defined as 

below: 

 

(18)                  
)(- exp-)( exp

)(- exp-)( exp
)( 




χf sigtan  

(19)                                           )(  purelinf  

 

Also output of a neuron is calculated by 

follow equation: 

 

  (20)      
1 1

tan




























  

 

m

k

OL

j

k

n

i

HL

ji

HL

jisig

OL

jkpurelinj bbxwfwfO

 
For training, algorithm of Levenberg-

Marquard (LM) [45-47] is used. 

Performance function of this algorithm is 

mean relative error (MRE), maximum 

number of epochs is 500 and performance 

goal is 10
-5

. 

 
Table 5: Determining number of optimum hidden 

neurons for estimating density and kinematic 

viscosity 

    Mean relative error 

No. of 

neurons   Train Test 

Validatio

n 

Tota

l 

  

Densit

y 

   

9   0.035 

0.04

1 0.030 

0.03

5 

10   0.024 

0.04

1 0.030 

0.02

8 

11   0.026 

0.04

5 0.033 

0.03

0 

12   0.024 

0.04

3 0.031 

0.02

8 

13   0.033 

0.04

5 0.034 

0.03

5 

14   0.018 

0.03

4 0.025 
0.02

1 

15   0.024 

0.04

7 0.031 

0.02

8 

16   0.025 

0.03

9 0.026 

0.02

7 

17   0.024 

0.04

3 0.035 

0.02

8 

18   0.024 

0.04

3 0.034 

0.02

8 

19   0.023 

0.04

3 0.034 

0.02

7 

20   0.026 

0.04

1 0.029 

0.02

9 

Kinematic viscosity 

9   2.47 2.67 2.66 2.53 

10   1.07 0.92 1.15 1.06 

11   0.91 0.81 1.02 0.91 

12   1.08 1.09 1.29 1.11 

13   1.41 1.16 1.41 1.37 

14   0.65 0.91 0.92 0.73 

15   0.93 0.85 1.05 0.94 

16   0.71 0.84 0.91 0.76 

17   0.80 1.14 0.93 0.87 

18   0.89 1.04 1.08 0.94 

19   0.69 0.76 0.93 0.74 

20   0.70 0.88 0.81 0.74 
 

 

4. Results and discussion 
   Table5 is shown values of mean relative 

error by applying of density and kinematic 

viscosity data, respectively. As clearly 

shown for 14 neurons in hidden layer MRE 

of density model for training, validation, 

testing and sum of data are 0.018, 0.034, 

0.025 and 0.021%, respectively and for 

kinematic viscosity these data are 0.65, 
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0.91, 0.92 and 0.73%, respectively. 

Parameters (weights and biases) of three-

layer networks for optimum hidden neurons 

(14 neurons) are presented in Table 6. 

   The obtained results from best model for 

density (a model with 14 neurons in hidden 

layer) are presented in Figure 2. This figure 

is for training, validation and testing data, 

respectively. In this figure obtained data 

from model versus experimental data was 

plot. Also relative errors of these data in this 

figure are shown. As shown in this figure 

maximum relative error for training, 

validation and testing data are 0.128, -0.126 

and -0.340%, respectively. Similar results 

for kinematic viscosity were presented in 

Figure3. Maximum relative error of 

kinematic viscosity for training, validation 

and testing data are -5.26, 4.48 and 4.49%, 

respectively. According to figures 2 and 3, 

high accuracy of neural network models 

clearly was shown. 

At the end, the obtained results from 

presented model for density and viscosity 

are compared with previous literatures 

correlations. Table 7 is shown MRE of 

different systems by using of ANN model 

and Eq. (9). Procedure of calculating 

constant of Eq. (9) and determining of MRE 

were presented in the literature [20]. As 

shown in Table 7, total mean relative error 

using ANN model is 0.021%, whilst this 

value by Eq. (9) is 0.05%. This result 

indicated high accuracy of ANN model. 

Also in Table 8, the obtained results 

from MRE of ANN kinematic viscosity 

model by Eqs. (10)-(15) are shown.  

 
Table6: ANN parameters for density and kinematic viscosity model 

Hidden layer 
 

Output layer 

Weights Biases 
 

Weights Bias 

1v  
Pure property of 

component 1 

Pure property of 

component 2 
T  

  

Mixture 

property  

Density 
       

0.4719 -0.1732 2.9137 0.2090 -4.2529 
 

1.1029 -0.1515 

-10.1182 -2.5341 18.7466 11.0542 28.4736 
 

-0.0167 
 

0.7864 1.0067 -0.5699 0.2475 -2.0678 
 

-0.0938 
 

7.4009 9.5311 -7.9452 0.6754 -10.0158 
 

-0.0071 
 

-0.0957 -0.3513 -0.1610 0.0684 0.1743 
 

-8.6405 
 

0.5124 1.8628 -3.8499 -0.2978 -0.6998 
 

2.8627 
 

-0.3567 -1.9457 -4.5235 0.0964 1.5938 
 

7.3664 
 

0.5915 1.5449 -3.6007 -0.2877 -0.8591 
 

-3.4727 
 

-0.3183 2.8638 7.8001 -0.1030 -3.7612 
 

4.4869 
 

-0.0902 -0.6276 0.7522 -0.0141 -0.1154 
 

4.0639 
 

0.3400 0.6787 -0.1888 -0.1155 1.7572 
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Figure2: Obtained results from ANN density model (training, validation and testing data) 

 

 

Table7: Comparing results of ANN and Eq. (9) 

System NDP MRE 

    ANN Eq. (9) 

Biodiesel (1) + ULSD (2) [20] 72 0.013 0.020 

Colza biodiesel (1) + Coconut biodiesel (2) [17] 55 0.011 0.040 

Soybean biodiesel (1) + Coconut biodiesel (2) [17] 45 0.024 0.060 

Cotton seed biodiesel (1) +  Babassu biodiesel (2) [16] 45 0.016 0.040 

Soybean biodiesel (1) + Babassu biodiesel (2) [16] 45 0.013 0.050 

Pure biodiesels and diesel (this work) 42 0.035 0.094 

SOB (1) + Diesel (2) (this work) 28 0.032 0.075 

COB (1) + Diesel (2) (this work) 28 0.028 0.072 

SFOB (1) + Diesel (2) (this work) 28 0.041 0.076 

WOB (1) + Diesel (2) (this work) 27 0.023 0.065 

ETB (1) + Diesel (2) (this work) 28 0.023 0.061 

Total 443 0.021 0.050 
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Figure3: Obtained results from ANN kinematic viscosity model (training, validation and testing data) 

 
Table8: Comparing results of ANN and Eqs. (10)-(15) 

 

System NDP MRE 

    

AN

N Eq. (10) Eq. (11) Eq. (12) Eq. (13) Eq. (14) 

Eq. 

(15) 

Biodiesel (1) + ULSD (2) [20] 72 0.93 4.79 2.10 2.39 2.13 2.17 3.43 

Commercial Biodiesel (1) + Low sulfur petrodiesel 
(2) [3] 105 0.62 2.77 1.74 1.76 1.81 1.74 1.73 

Colza biodiesel (1) + Coconut biodiesel (2) [17] 55 0.4 5.50 2.17 2.27 2.22 2.27 2.54 

Soybean biodiesel (1) + Coconut biodiesel (2) [17] 45 0.96 5.36 2.13 2.18 2.23 2.17 2.34 

Cotton seed biodiesel (1) +  Babassu biodiesel (2) 
[16] 45 0.46 5.50 2.24 2.26 2.30 2.28 2.28 

Soybean biodiesel (1) + Babassu biodiesel (2) [16] 45 0.47 6.36 2.62 2.68 2.58 2.69 2.77 

Pure biodiesels and diesel (this work) 36 0.82 2.08 1.09 1.10 1.34 1.12 1.22 

SOB (1) + Diesel (2) (this work) 24 1.01 2.29 1.34 1.29 1.30 1.36 1.41 

COB (1) + Diesel (2) (this work) 24 0.90 1.85 0.99 1.00 1.01 1.00 1.15 

SFOB (1) + Diesel (2) (this work) 24 1.66 1.83 0.87 0.89 1.06 0.87 0.97 

WOB (1) + Diesel (2) (this work) 24 0.57 1.97 0.94 1.01 1.03 0.96 1.28 

ETB (1) + Diesel (2) (this work) 24 0.58 2.02 0.89 0.95 1.04 0.93 1.22 

Total 523 0.73 3.88 1.77 1.85 1.84 1.81 2.08 
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   In this study, the procedure for calculation 

of parameters in Eqs. (10)-(15) is similar to 

the literature [20]. In Table 8 MRE of each 

system using of ANN model and Eq. (10)-

(15) are presented. Total mean relative error 

of ANN kinematic viscosity model and Eqs. 

(10)-(15) are 0.73, 3.88, 1.77, 1.85, 1.84, 

1.81 and 2.08%, respectively. Therefore 

artificial neural network model has shown a 

higher accuracy than presented correlation 

in the previous literatures. 

 

5. Conclusion 
   In this study for estimating density and 

kinematic viscosity of biodiesel-diesel 

blends, artificial neural network (three-layer 

feed forward neural network with LM 

algorithm, „tansig‟ transfer function in 

hidden layer and „purelin‟ transfer function 

in output layer) have been used. 

   The published literature data for density 

and kinematic viscosity of biodiesel-diesel 

blends and this work data (SOB, COB, 

SFOB, WOB and ETB) have been used for 

learning of network. 70% of data (311 data 

points for density and 367 data points for 

kinematic viscosity) for training, 15% of 

data (66 data points for density and 78 data 

points for kinematic viscosity) for 

validation and 15% of data (66 data points 

for density and 78 data points for kinematic 

viscosity) for testing were selected. 

   By applying networks on density and 

kinematic viscosity data, number of 

optimum neurons in hidden layer for each 

two models (density and kinematic 

viscosity) is 14. For these numbers of 

neuron mean relative error of density on 

training, validation and testing data were 

obtained 0.018, 0.034 and 0.025%, 

respectively. Also mean relative error for 

kinematic viscosity on training, validation 

and testing data were obtained 0.65, 0.91 

and 0.92%, respectively. 

    Finally total mean relative errors for data 

of density was 0.021% and for kinematic 

viscosity was obtained 0.73% that is lower 

than the other correlations.  

 

Nomenclature 
a  constant in Eqs. (1), (5) and (8) 

A  constant in Eqs. (2) and (3) 

b  constant in Eqs. (1), (5) and (8) 

B  constant in Eqs. (2) and (3) 

jb  bias of j th neuron 

c  constant in Eq. (8) 

C  constant in Eqs. (2) and (3) 
f  transfer function, function 

jO  output of j th neuron 

T  temperature, K 

v  volume fraction  

V  volume percent, % 

jiw  synaptic weight corresponding to i

th synapse j th neuron 

jkw  synaptic weight corresponding to k

th synapse j th neuron 

ix  i th input signal to th neuron 

Greek letter 

  constant in Eq. (9) 
  constant in Eq. (9) 
  input value of neural network 

  constant in Eq. (9) 

  constant in Eqs. (10) to (15) 
  constant in Eqs. (10) to (15) 

  constant in Eqs. (10) to (15) 
  density, g/cm

3
 

  kinematic viscosity, cSt 

  constant in Eqs. (10) to (15) 

Subscripts 

1 component 1 

2 component 2 

m  Mixture 

Superscripts 

HL  hidden layer 

OL  output layer 
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