[1] Xu, X. (2007). “Study on oil-water two-phase flow in horizontal pipelines.” J. Pet. Sci. Eng., Vol. 59, pp43–58.
[2] Bannwart, A.C., Rodriguez, O.M.H., de Carvalho, C.H.M., Wang, I.S., Vara, R.M.O. (2004). “Flow patterns in heavy crude oil-water flow.” J. Energy. Res. Technol. Trans., Vol. 126, No. 3, pp. 184–189.
[3] Charles, M.E., Govier, G.W., Hodgson, G.W. (1961). “The horizontal pipeline flow of equal density oil-water mixtures.” Can. J. Chem. Eng., pp. 27–36.
[4] Mandal, T.K., Chakrabarti, D.P., Das, G. (2007). “Oil water flow through different diameter pipes–similarities and differences.” Trans. IchemE. Part A. Chem. Eng. Res. Des., Vol. 85, No. A8, pp. 1123–1128.
[5] Wegmann, A., von Rohr, P.R. (2006). “Brief communication: two-phase liquid-liquid flows in pipes of small diameters.” Int. J. Multiphase Flow, Vol. 32, pp. 1017–1028.
[6] Lockhart, R.W., Martinelli, R.C. (1949). “Proposed correlation of data for isothermal two-phase, two-component flow in pipes.” Chem. Eng. Prog., Vol. 45, pp. 39–48.140
[7] Charles, M.E., Lilleleht, L.U. (1966). “Correlation of pressure gradients for the stratified laminar turbulent pipeline flow of two immiscible liquids.” Can. J. Chem. Eng., Vol. 44, pp. 47–49.
[8] Stapelberg, H.H., Mewes, D. (1994). “The pressure loss and slug frequency of liquid–liquid–gas slug flow in horizontal pipes.” Int. J. Multiphase Flow, Vol. 20, pp. 285–303.
[9] Angeli, P., Hewitt, G.F. (1998). “Pressure gradient in horizontal liquid–liquid flows.” Int. J. Multiphase Flow, Vol. 24, No. 7, pp. 1183–1203.
[10] Chakrabarti, D.P., Das, G., Ray, S. (2005). “Pressure drop in liquid-liquid two-phase horizontal flow: experiments and prediction.” Chem. Eng. Technol., Vol. 28, pp. 1003–1009.
[11] Rodriguez, O.M.H., Oliemans, R.V.A. (2006). “Experimental study on oil-water flow in horizontal and slightly inclined pipes.” Int. J. Multiphase Flow, Vol. 32, pp. 323–343.
[12] Yiping, L., Hua, Z., Shuhua, W., Jing, W. (2008). “Prediction of pressure gradient and hold up in small Eötvös number liquid-liquid segregated flow.” Chinese J. Chem. Eng., Vol. 16, No. 2, pp. 184–191.
[13] Al–Wahaibi, T. (2012). “Pressure gradient correlation for oil-water separated flow in horizontal pipes, Exp. Therm. Fluid Sci., Vol. 42, pp. 196–203.
[14] Zhang, G., Patuwo, B.E., Hu, M.Y. (2002). “Forecasting with artificial neural networks: to optimum bit selection.” Comput. Geosci., Vol. 28, pp. 131–141.
[15] Sablani, S.S., Shayyab, W.H., Kacimovc, A. (2003). “Explicit calculation of the friction factor in pipeline flow of Bingham plastic fluids: a neural network approach.” Chem. Eng. Sci., Vol. 58, pp. 99–106.
[16] Goutorbe, B., Lucazeau, F., Bonneville, A. (2006). “Using neural networks to predict thermal conductivity from geophysical well logs, Artificial neural network for the evaluation of CO2 corrosion in a pipeline steel.” Geophys. J. Int., Vol. 166, pp. 115–125.
[17] Bassam, A., Ortega–Toledo, D., Hernández, J.A., González–Rodriguez, J.G., Uruchurtu, J. (2009). “Artificial neural network for the evaluation of CO2 corrosion in a pipeline steel.” J. Solid State Electr., Vol. 13, pp. 773–780.
[18] Osman, E.A., Aggour, M.A. (2002). “Artificial Neural Network Model for Accurate Prediction of Pressure Drop in Horizontal and Near–Horizontal–Multiphase Flow.” Pet. Sci. Technol., Vol. 20, No. 1–2, pp. 1–15.
[19] Osman, E.A. (2001). “Artificial Neural Networks Models for Identifying Flow Regimes and PredictingLiquid Holdup in Horizontal Multiphase Flow.” SPE Middle East Oil and Gas Show and Conf., Bahrain, 68219.
[20] Shippen, M.E., Scott, S.L. (2002). “A Neural Network Model for Prediction of Liquid Holdup in Two-Phase Horizontal Flow.” SPE J., 77499.
[21] Malayeri, M.R., Steinhagen, H.M., Smith, J.M. (2003). “Neural network analysis of void fraction in
air/water two-phase flows at elevated temperatures.” Chem. Eng. Process, Vol. 42, pp. 587–597.
[22] del Castillo, A.Á., Santoyo, E., García–Valladares, O. (2012). “A new void fraction correlation inferred from artificial neural networks for modeling two-phase flows in geothermal wells.” Comput. Geosci., Vol. 41, pp. 25–39.
[23] Sharma, H., Das, G., Samanta, A.N. (2006). “ANN–based prediction of two-phase gas-liquid flow patterns in a circular conduit.” AIChE. J., Vol. 52, pp. 3018–3028.
[24] Al–Naser, M., Elshafei, M. (2015). “Two-phase flow regimes identification using artificial neural network with nonlinear normalization.” proceedings of the 2nd international conference on fluid flow, Heat and Mass Transfer Ottawa, Ontario, Canada.
[25] Shirley, R., Chakrabarti, D.P., Das, G. (2012). “Artificial neural networks in liquid-liquid two-phase flow.” Chem. Eng. Commun., Vol. 199, pp. 1520–1542.
[26] Raj, T.S., Chakrabarti, D.P., Das, G. (2005). “Liquid-liquid stratified flow through horizontal conduit.”Chem. Eng. Technol., Vol. 28, pp. 899–907.
[27] Dasari, A., Desamala, A.B., Dasmahapatra, A.K., Mandal, T.K. (2013). “Experimental studies and probabilistic neural network prediction on flow pattern of viscous oil-water flow through a circular horizontal pipe.” Ind. Eng. Chem. Res., Vol. 52, No. 23, pp. 7975–7985.
[28] Al–Wahaibi, T. Smith, M., Angeli, P. (2007). “Effect of drag–reducing polymers on horizontal oil-water flows.” J. Pet. Sci. Eng., Vol. 57, No. 3–4, pp. 334–346.
[29] Al–Yaari, M., Soleimani, M.A., Abu–Sharkh, B., Al–mubaiyedh, U., Al–sarkhi, A. (2009). “Effect of drag reducing polymers on oil-water flow in a horizontal pipe.” Int. J. Multiphase Flow, Vol. 35, pp. 516–524.
[30] Elseth, G. (2001). “An experimental study of oil-water flow in horizontal pipes, Ph.D. Thesis, The Norwegian University of Science and Technology, Porsgrunn.
[31] Nädler, M., Mewes, D. (1997). “Flow-induced emulsification in the flow of two immiscible liquids in horizontal pipes.” Int. J. Multiphase Flow, Vol. 23, pp. 55–68.
[32] Ravi, P., Sharma, M. Gosh, Das, G., Das, G.P.K. (2010). “Effects of return bands on kerosene– water flow through a horizontal pipe.” 7th Int. Conf. on Multiphase Flow, ICMF 2010, Tampa, Florida. USA.
[33] Trallero, J.L. (1995). “Oil–water flow patterns in horizontal pipes.” Ph.D. Thesis, University of Tulsa. USA.
[34] Valle, A., Kvandal, H. (1995). “Pressure drop and dispersion characteristics of separated oil/water flow.” Two-Phase Flow Model Exp., pp. 583–592.
[35] Yousuf, N. (2011). “Experimental study in horizontal oil-water flow.” Ph.D. Thesis, Ahmadu Bello University, Nigeria.
[36] Razavi, M.A., Mortazavi, A., Mousavi, M. (2003). “Dynamic modeling of milk ultrafiltration by artificial neural network.” J. Membrane Sci., Vol. 220, pp. 47–58.
[37] Saini, L.M., Soni, M.K. (2002). “Artificial neural network based peak load forecasting using Levenberg Marquardt and quasi-Newton methods.” IEE Proceedings of Generation, Trans. Distrib., Vol. 149, pp. 578–584.
[38] Hush, D., Horne, B.G. (1993). “Progress in supervised neural networks.” IEEE Signal Proc. Mag., Vol. 10, pp. 8–39.
[39] Karimi, H., Yousefi, F., Rahimi, M.R. (2011). “Correlation of viscosity in nanofluids using genetic algorithm–neural network (GA–NN).” Heat Mass Transfer, Vol. 47, pp. 1417–1425.
[40] Zigrang, D.J., Sylvester, N.D. (1985). “A review of explicit friction factor equations.” J. Energ. Res. Technol., Vol. 107, pp. 280–283.
[41] Dukler, A.E., Wicks, M., Cleveland, R.G. (1964). “Pressure drop and hold–up in two-phase flow.” AIChE. J., Vol. 10, pp. 38–51.
[42] Garson, G.D. (1991). “Interpreting neural–network connection weights.” A.I. Expert., Vol. 6, pp. 46–51