[1] Esmaeilzadeh, F., Fathi Kaljahi, J. and Ghanaei, E. (2006). “Investigation of different activity coefficient models in thermodynamic modeling of wax precipitation.” Fluid PhaseEquilib., Vol. 248, No. 1, pp. 7-18.
[2] Zuo, J. Y., Zhang, D. D. and Ng, H. J. (2001). “An improved thermodynamic model for wax precipitation from petroleum fluids.” Chem. Eng. Sci., Vol. 56, No. 24, pp. 6941-6947.
[3] Won, K. W. (1986). “Thermodynamics for solid solution-liquid-vapor equilibria: wax phase formation from heavy hydrocarbon mixtures.” Fluid Phase Equilib., Vol. 30, pp. 265-279.
[4] Won, K. W. (1989). “Thermodynamic calculation of cloud point temperatures and wax phase compositions of refined hydrocarbon mixtures.” Fluid Phase Equilib., Vol. 53, pp. 377-396.
[5] Hansen, J. H., Fredenslund, A., Pedersen, K. S. and Ronningsen, H. P. (1988). “A thermodynamic model for predicting wax formation in crude oils.” AIChE J., Vol. 34, No. 12, pp. 1937-1942.
[6] Flory, P. J. (1953). Principles of polymer chemistry. Cornell Univ. Press. Ithaca, New York.
[7] Pedersen, W. B., Hansen, A. B., Larsen, E. and Nielsen, A. B. (1991). “Wax precipitation from North Sea crude oils. 2. Solid-phase content as function of temperature determined by pulsed NMR.” Energy Fuels, Vol. 5, No. 6, pp. 908-913.
[8] Lira-Galeana, C., Firoozabadi, A. and Prausnitz, J. M. (1996). “Thermodynamics of wax precipitation in petroleum mixtures.” AIChE J., Vol. 42, No. 1, pp. 239-248.
[9] Vafaie-Sefti, M., Mousavi-Dehghani, S. A. and Mohammad-Zadeh Bahar, M. (2000). “Modification of multi solid phase model for prediction of wax precipitation: a new and effective solution method.” Fluid Phase Equilib., Vol. 173, No. 1, pp. 65-80.
[10] Robinson, D. B., Peng, D. Y. and Chung, S. Y. K. (1985). “The development of the Peng-Robinson equation and its application to phase equilibrium in a system containing ethanol.” Fluid Phase Equilib., Vol. 24, No. 1-2, pp. 25-41.
[11] Dalirsefat, R. and Feyzi, F. (2007). “A thermodynamic model for wax deposition phenomena.” Fuel, Vol. 86, No. 10-11, pp. 1402-1408.
[12] Feyzi, F., Riazi, M. R., Shaban, H. I. and Ghotbi, S. (1998). “Improving cubic equations of state for heavy reservoir fluids and critical region.” Chem. Eng. Commun., Vol. 167, No. 1, pp. 147-166.
[13] Coutinho, J. A. P. (1998). “Predictive UNIQUAC: a new model for the description of multiphase solid-liquid equilibria in complex hydrocarbon mixtures.” Ind. Eng. Chem. Res., Vol. 37, No. 12, pp. 4870-4875.
[14] Abrams, D. S. and Prausnitz, J. M. (1975). “Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems.” AIChE J., Vol. 21, No. 1, pp. 116-128.
[15] Coutinho, J. A. P. (2000). “A thermodynamic model for predicting wax formation in jet and diesel fuels.” Energy Fuels, Vol. 14, No. 3, pp. 625-631.
[16] Coutinho, J. A. P., Mirante, F. and Pauly, J. (2006). “A new predictive UNIQUAC for modeling of wax formation in hydrocarbon fluids.” Fluid Phase Equilib., Vol. 247, No. 1-2, pp. 8-17.
[17] Coutinho, J. A. P. and Ruffier-Me´ray, V. (1997). “Experimental measurements and thermodynamic modeling of paraffinic wax formation in undercooled solutions.” Ind. Eng. Chem. Res., Vol. 36, No. 11, pp. 4977-4983.
[18] Bhat, N. V. and Mehrotra, A. K. (2004). “Measurement and prediction of the phase behavior of wax−solvent mixtures: significance of the wax disappearance temperature.” Ind. Eng. Chem. Res., Vol. 43, No. 13, pp. 3451-3461.
[19] Coutinho, J. A. P., Andersen, S. I. and Stenby, E. H. (1995). “Evaluation of activity coefficient models in prediction of alkane solid-liquid equilibria.” Fluid Phase Equilib., Vol. 103, No. 1, pp. 23-39.
[20] Coutinho, J. A. P. and Stenby, E. H. (1996). “Predictive local composition models for solid/liquid equilibrium in n-alkane systems: Wilson equation for multicomponent systems.” Ind. Eng. Chem. Res., Vol. 35, No. 3, pp. 918-925.
[21] Ji, H.-Y., Tohidi, B., Danesh, A. and Todd, A. C. (2004). “Wax phase equilibria: developing a thermodynamic model using a systematic approach.” Fluid Phase Equilib., Vol. 216, No. 2, pp. 201-217.
[22] Ghanaei, E., Esmaeilzadeh, F. and Kaljahi, J. F. (2007). “A new predictive thermodynamic model in the wax formation phenomena at high pressure condition.” Fluid Phase Equilib., Vol. 254, No. 1-2, pp. 126-137.
[23] Milhet, M., Pauly, J., Coutinho, J. A. P., Dirand, M. and Daridon, J. L. (2005). “Liquid-solid equilibria under high pressure of tetradecane + pentadecane and tetradecane + hexadecane binary systems.” Fluid Phase Equilib., Vol. 235, No. 2, pp. 173-181.
[24] Smith, J. M. and Van Ness, H. C. (2001). Introduction to chemical engineering thermodynamics. 6th. Ed. Chapter 3, McGraw-Hill Pub. Co., New York.
[25] Metivaud, V., Rajabalee, F., Oonk, H. A. J., Mondieig, D. and Haget, Y. (1999). “Complete determination of the solid (RI) - liquid equilibria of four consecutive n-alkane ternary systems in the range C14H30-C21H44 using only binary data.” Can. J. Chem., Vol. 77, No. 3, pp. 332-339.
[26] Daridon, J. L., Pauly, J. and Milhet, M. (2002). “High pressure solid-liquid phase equilibria in synthetic waxes.” Phys. Chem. Chem. Phys., Vol. 4, No. 18, pp. 4458-4461.