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Abstract 
In this study, the use of the three-layer feed forward neural network has been investigated for 

estimating of infinite dilute diffusion coefficient ( 12D ) of supercritical fluid (SCF), liquid and gas 

binary systems. Infinite dilute diffusion coefficient was spotted as a function of critical temperature, 
critical pressure, critical volume, normal boiling point, molecular volume in normal boiling point, 
molecule diameter, Lennard-Jones’s (LJ) energy parameter, temperature and pressure. For each set of 
SCF, liquid and gas systems a three-layer network has been applied with training algorithm of 
Levenberg-Marquard (LM). The obtained results of models have shown good accuracy of artificial 
neural network (ANN) for estimating infinite dilute diffusion coefficient of SCF, liquid and gas binary 
systems with mean relative error (MRE) of 2.88 % for 231 systems containing 4078 data points (mean 
relative error for ANN model in SCF, liquid and gas binary systems are 3.00, 2.99 and 1.21 %, 
respectively). 

 

Keywords: Artificial neural network, Binary mixture, Infinite dilute diffusion coefficient, 
Supercritical fluid 

 

Introduction 
      Infinite dilute diffusion coefficient ( 12D ) 
is one of the most important transport 
properties. In which molecule 1 is solvent 
and molecule 2 is solute, which each 
molecule 2 is in an environment of pure 
molecule 1. Concentration of molecule 2 is 
up to 5 and perhaps 10 mole percent [1]. In 
some of the industrial processes such as 
extraction from SCFs, mixing of 
concentrated liquids and gas systems in low 
densities, systems can be supposed as 
infinite dilute condition. For this reason 
numerous equations have been presented for 
estimating this property. These equations 
are on the base of ideal gas, Enskog fluid, 
hard sphere fluid, LJ fluid and real fluid 
theories [2]. 
     Although different theories and semi-
empirical correlations has been offered for 
estimating of infinite dilute diffusion 
coefficient, remarkable difference are 
observed between results and real values. In 
addition, each correlation has a high 
accuracy only for special group of fluids. 
Since last two decade using of neural 
network has a wide spread application to 

solve different problems of chemical 
engineering  
[3-15]. Recently Eslamloueyan and 
Khademi [15] were investigated a three-
layer feed forward neural network to 
estimate gases binary diffusion coefficient 
in atmospheric pressure. In their suggested 
model, temperature, critical temperature, 
critical volume and molecular weight are 
spotted as input data of the network. 
     In this work, three-layer feed forward 
neural network was used for estimating 
infinite dilute diffusion coefficient of binary 
SCF, liquid and gas systems separately. 
Results were shown good accuracy of 
models in comparison with experimental 
data and the other models. 
 
1. Methodology 
     Natural ability of artificial neural 
network can be used for learning and 
recognizing of non-linear and complex 
correlation, to estimate infinite dilute 
diffusion coefficient of SCF, liquid and gas 
systems. A briefly review on ANN that was 
used in this study, has been done by 
Eslamloueyan and Khademi [13]. 
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1.1. Analyzing and using of data 
     In this work a large complex of data 
were compiled that consists of 231 systems 
and 4078 data points (binary mixtures of 
SCF (111 systems/3277 points), binary 
liquid (88 systems/549 points) and binary 
gas mixtures (32 systems/252 points)). An 
ANN was used for each one of SCF, liquid 
and gas systems. Table 1 shows the studied 
systems, number of data point (NDP) and 

sources of data. Three-fourths of data were 
used for training of network and the rest 
used for test. In these models infinite dilute 
diffusion coefficient is spotted as a function 
of molecular weight, critical properties, 
normal boiling point, molar volume in 
normal boiling point, molecule diameter, LJ 
energy parameter, temperature and pressure: 
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Table 1: Studied systems and data sources 
System   NDP Data sources 
Solvent (1) Solute (2)   

Supercritical systems 
2,3-Dimethylbutane Benzene 11 [16]
  Napthalene 9 [16]
  Phenanthrene 11 [16]
  Toluene 10 [16]
Carbon dioxide 1,3-Divinylbenzene   15 [17]
  2,3-Dimethylaniline  15 [18]
  2,6-Dimethylaniline  15 [18]
  2-Bromoanisole   15 [17]
  2-Fluoroanisole 15 [17]
  2-Methylanisole  15 [18]
  3-Nitrotoluene  15 [18]
  4-Methylanisole  15 [18]
  Allylbenzene 15 [17]
  γ-Linolenic acid  142 [19]
  γ-Linolenic acid   ethyl ester   44 [19]
  γ-Linolenic acid   methyl ester   55 [19, 20]
  1,1,1,5,5,5-Hexafluoroacetylacetone 15 [21]
  1,2-Dichlorobenzene 15 [22]
  1,2-Diethylbenzene 15 [23]
  1,3,5-Trimethylbenzene 22 [24, 25]
  15-Crown-5 30 [26]
  1-Phenyldodecane 15 [27]
  1-Phenylethanol 15 [28]
  1-Phenylhexane 15 [27]
  1-Phenyloctane 15 [27]
  1-Propanol 17 [29]
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Table 1: Continued 
System   NDP Data sources 
Solvent (1) Solute (2)   
Supercritical systems  
Carbon dioxide 2,4-Dimethylphenol 15 [30]
  2-Butanone 38 [31]
  2-Ethyltoluene 15 [32]
  2-Pentanone 24 [31]
  2-Phenyl-1-propanol 15 [28]
  2-Phenylethanol 15 [28]
  2-Phenylethyl acetate 15 [33]
  3-Pentanone 39 [31]
  3-Phenyl-1-propanol 15 [28]
  3-Phenylpropyl acetate 15 [33]
  Linolenic acid 56 [34]
  AA ethyl ester 48 [35]
  Acetone 184 [24, 31, 36, 37]
  Acridine 6 [38]
  Aniline 15 [25]
  Anisole 15 [30]
  Pinene 15 [39]
  Arachidonic acid (AA) 75 [40]
  Tocopherol 82 [41-43]
  Carotene 90 [41-43]
  Behenic acid ethyl ester 34 [44, 45]
  Benzene 249 [24, 46-50]
  Benzoic acid 32 [29, 38, 51]
  Benzyl acetate 15 [33]
  Benzylacetone 15 [52]
  Biphenyl 27 [51]
  Bromobenzene 15 [53]
  Butyric acid ethyl ester 16 [45]
  Caffeine 21 [54]
  Capric acid ethyl ester 16 [45]
  Caprylic acid ethyl ester 16 [45]
  Chlorobenzene 15 [53]
  Chrysene 4 [24]
  Citral 15 [55]
  Cobalt(III) acetylacetonate 38 [56]
  Copper(II) Trifluoroacetylacetonate 12 [21]
  DHA ethyl ester 17 [44]
  DHA methyl ester 17 [44]
  Dibenzo-24-crown-8 28 [26]
  Dibenzyl ether 15 [33]
  Diethyl ether 15 [57]
  Diisopropyl ether 15 [57]
  Diolein 9 [58]
  d-limonene 15 [55]
  Docosahexaenoic acid (DHA) 80  [34, 45]
  Eicosapentaenoic acid (EPA) 72 [34, 45]
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Table 1: Continued 
System   NDP Data sources 
Solvent (1) Solute (2)   
Supercritical systems  

Carbon dioxide EPA methyl ester 17 [44]
  Ethanol 24 [29]
  Ethyl acetate 15 [54]
  Ethyl benzoate 15 [52]
  Eugenol 15 [52]
  Fluorobenzene 15 [53]
  Hexachlorobenzene 13 [59]
  Iodobenzene 15 [53]
  Linalool 15 [46]
  Linoleic acid 71 [40]
  Methanol 10 [29]
  Monoolein 11 [58]
  Myristic acid ethyl ester 16 [45]
  Naphthalene 41 [24, 59, 60]
  n-Butylbenzene 15 [27]
  Nitrobenzene 15 [30]
  n-Pentylbenzene 15 [27]
  Oleic acid 19 [58]
  Oleic acid ethyl ester 5 [58]
  Oleic acid methyl ester 19 [58]
  Palladium (II) acetylacetonate 125 [56]
  p-Dichlorobenzene 14 [51]
  Phenanthrene 25 [24, 38, 59]
  Phenol 110 [37, 42, 43, 54]
  Phenylacetic acid 16 [61]
  Phenylmethanol 15 [28]
  Pyrene 3 [24]
  Stearic acid ethyl ester 34 [44, 45]
  Styrene 15 [25]
  Tetrahydrofuran 15 [57]
  Thenoyltrifluoroacetone 15 [21]
  Toluene 26 [50, 54]
  Triarachidonin 27 [62]
  Trierucin 101 [62]
  Trifluoroacetylacetone 15 [21]
  Trinervonin 38 [62]
  Triolein 10 [58]
  Ubiquinone 71 [63]
  Vanillin 15 [61]

Liquid systems 
2,2,4-Trimethylpentane 1,3,5-Trimethylbenzene 4 [64]
  Benzene 4 [64]
  Ethylbenzene 4 [64]
  o-Xylene 4 [64]
  p-Xylene 4 [64]
  Toluene 4 [64]
Cyclohexane Benzene 8 [65]
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Table 1: Continued 
System   NDP Data sources 
Solvent (1) Solute (2)   
Supercritical systems  

 Cyclohexane Ethane 5 [65]
  Ethylene 5 [65]
  Toluene 4 [66]
n-Decane 12-Crown-4 4 [67]
  15-Crown-5 4 [67]
  18-Crown-6 4 [67]
  Argon 3 [68]
  Carbon tetrachloride 3 [68]
  Dicyclohexano-18-crown-6 4 [67]
  Dicyclohexano-24-crown-8 4 [67]
  Krypton 3 [68]
  Methane 3 [68]
  s-Trioxane 4 [67]
  Tetrabutyltin 4 [68]
  Tetraethyltin 3 [68]
  Tetramethyltin 4 [68]
  Tetrapropyltin 4 [68]
  Xenon 4 [68]
n-Dodecane 1,3,5-Trimethylbenzene 4 [66]
  Acetone 5 [66]
  Benzene 4 [66]
  Carbon dioxide 9 [69]
  Carbon monoxide 9 [69]
  Hydrogen 9 [69]
  Linoleic acid methyl ester 4 [66]
  m-Xylene 4 [66]
  Naphthalene 5 [66]
  n-Decane 5 [70]
  n-Hexadecane 5 [70]
  n-Octane 9 [70]
  n-Tetradecane 5 [70]
  Toluene 4 [66]
n-Eicosane Carbon dioxide 5 [71]
  Carbon monoxide 5 [71]
  Hydrogen 5 [71]
  n-Dodecane 5 [71]
  n-Hexadecane 5 [71]
  n-Octane 5 [71]
n-Heptane n-Decane 5 [70]
  n-Dodecane 5 [70]
  n-Hexadecane 8 [70]
  n-Octane 4 [70]
  n-Tetradecane 5 [70]
n-Hexadecane Carbon dioxide 10 [69]
  Carbon monoxide 10 [69]
  Hydrogen 10 [69]
  n-Decane 5 [72]
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Table 1: Continued 
System   NDP Data sources 
Solvent (1) Solute (2)   
Supercritical systems  

n-Hexadecane n-Dodecane 5 [72]
  n-Octane 10 [72]
  n-Tetradecane 5 [72]
n-Hexane 1,3,5-Trimethylbenzene 20 [66, 73]
  Acetone 5 [66]
  Acetonitrile 7 [74]
  Benzene 39 [64, 66, 73, 74]
  Carbon disulphide 10 [74]
  m-Xylene 5 [66]
  Naphthalene 26 [66, 73, 74]
  Phenanthrene 15 [73]
  p-Xylene 17 [66, 73]
  Toluene 20 [66, 73]
n-Octacosane Carbon dioxide 5 [75]
  Carbon monoxide 5 [75]
  Hydrogen 5 [75]
  n-Dodecane 5 [75]
  n-Hexadecane 5 [75]
  n-Octane 5 [75]
n-Octane 1,3,5-Trimethylbenzene 4 [64]
  Argon 4 [68]
  Benzene 4 [64]
  Carbon tetrachloride 4 [68]
  Ethylbenzene 4 [64]
  Krypton 4 [68]
  Methane 4 [68]
  o-Xylene 4 [64]
  p-Xylene 4 [64]
  Tetrabutyltin 4 [68]
  Tetraethyltin 5 [68]
  Tetramethyltin 4 [68]
  Tetrapropyltin 4 [68]
  Toluene 4 [64]
  Xenon 4 [68]

Gas systems 
Argon Ethane 9 [76]
  Helium 11 [77, 78]
  Hydrogen 5 [77]
  i-Butane 8 [76]
  Methane 9 [76]
  n-Butane 8 [76]
  Neon 11 [77, 79]
  Propane 9 [76]
Carbon dioxide Helium 7 [80]
  Hydrogen 7 [80]
Carbon monoxide Helium 7 [80]
  Hydrogen 7 [80]
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Table 1: Continued 
System   NDP Data sources 
Solvent (1) Solute (2)   
Supercritical systems  

Deuterium Hydrogen 5 [77]
Ethane Nitrogen 7 [80]
Ethylene Nitrogen 7 [80]
Helium Hydrogen 12 [77, 81]
Krypton Argon 6 [82]
  Helium 6 [82]
  Neon 12 [80, 82]
  Xenon 9 [82]
Methane Carbon dioxide 10 [83]
  Tetrachloroethene 5 [84]
Neon Deuterium 5 [77]
  Helium 24 [77-79]
  Hydrogen 5 [77]
Nitrogen Ethane 7 [85]
  Methane 7 [85]
  n-Butane 5 [85]
  Propane 6 [85]
Tetrafluoromethane 1,1,1-Trichloroethane 5 [84]
  Tetrachloroethene 5 [84]
Xenon Neon 6 [79]

 
 
     Critical properties (critical temperature, 
critical pressure and critical volume) and 
molecular descriptors are available in 
literature [2], which estimated by several 
equations. In Table 2 variation range of 
each parameter (input data) and infinite 
dilute diffusion coefficient (output data) are 
summarized for SCF, liquid and gas 
systems. 
 

1.2. Neural network training 
     After determination of input data, ANN 
was designed. In this case a three-layer feed 
forward network has been used. Number of 
neurons in hidden layer should has a 
minimum value and if training error of 
network with these number of neurons does 
not have expected value, number of neurons 
is increased one by one to achieve desired 
value [86]. By applying neural network for 
infinite dilute diffusion coefficient of SCF, 
liquid and gas systems and changing 
number of neurons in hidden layer, number 
of optimal neurons was found in hidden 
layer as 21, 19 and 18, respectively (attend 
to Table 3). In these models, tansig transfer 

function in hidden layer and purelin transfer 
function in output layer were used which 
are defined as follow: 
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    Also output of one neuron is computed 
by following equation: 
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       For training of data, neural network 
algorithm of LM [87-89] was used. 
Performance function of this algorithm is 

MRE (    
i

NDP

i

calc DDDNDPMRE 
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maximum number of epochs is 500 and 
performance goal is 10-5. 
 
 



 
   34                                 Journal of Chemical and Petroleum Engineering, University of Tehran, Vol. 48, No.1, Jun. 2014 

 
 

 
Table 2: Variations range of input and output of neural network 

Property Supercritical systems  Liquid systems  Gas systems 
 Minimum Maximum  Minimum Maximum  Minimum Maximum

 g/mol1M  44.01 86.18 84.16 394.77 4.00 131.30
 K1cT   304.10 500.00 507.50 864.27 5.19 305.40
 MPa1cP   3.13 7.38 0.66 4.07 0.23 7.38

 mol/cm3
1cV   93.90 358.00 308.00 1603.50 41.60 148.30

 K1bpT   194.70 331.10 341.90 704.75 4.25 194.70

 mol/cm3
1bpV   33.28 135.31 115.57 651.26 14.18 53.73








 
A1LJσ   3.58573 5.60165 5.32769 9.23375 2.73350 4.17576

   K/ 1BLJ kε  241.48 397.05 403.00 686.31 4.12 830.49
 g/mol2M   32.04 1137.91 2.02 460.61 2.02 165.83
 K2cT   412.85 1601.10 33.00 1357.66 5.19 620.20
 MPa2cP   0.25 8.09 1.25 7.90 0.23 7.38

 mol/cm3
2cV   118.00 3081.54 64.30 1210.75 41.60 289.60

 K2bpT   299.15 1229.05 20.30 1077.88 4.25 394.40

 mol/cm3
2bpV   42.28 1291.44 22.38 485.16 14.18 108.35








 
A2LJσ   3.86945 11.48007 3.16052 8.40827 2.73350 5.21941

   K/ 2BLJ kε  4.12 1271.42 26.21 1078.11 4.12 830.49
 KT  288.35 548.20 101.80 567.00 76.60 4262.00
 MPaP  5.35 40.11 0.101 385.600 0.101 0.101

 s/cm10 24
12 D   0.28 6.44 0.04 11.80 0.04×104 10.80×104

 
 
2. Results and discussion 
     Results of determination of the optimal 
number of neurons in hidden layer for SCF, 
liquid and gas are presented in Table 3. 
According to Table 3 the best neural 
networks for SCF, liquid and gas systems 
has 21, 19 and 18 neuron in hidden layer, 
respectively. As it presented in Table 3 
MRE of test data for SCF, liquid and gas 
systems are 3.49, 2.60 and 2.38 %, 
respectively. 
     Figure 1 shows a correlation between 
results of training and test data of neural 
network and experimental data for SCF. 
Also in this Figure percent of relative error (

  .exp
12

.exp
12

.
12 /100RE DDDcalc  ) for each 

training and test data has been shown. 
Figures 2 and 3 show the similar results for 

liquid and gas systems, respectively. As it 
can be observed from Figures 1 to 3, there 
exist a good correlation between 
experimental data and neural network 
models output. 
     In this study, estimation of infinite dilute 
diffusion coefficient by ANN model has 
been compared with the results of the 
existed correlations and equations in the 
literature [2]. Correlations that have been 
used in literature [2] with their sources were 
summarized in Table 4. In addition to 
correlations represented in Table 4, real 
fluid theory was also used for estimation of 
infinite dilute diffusion coefficient [2]. Eqs. 
(5)-(8) for SCF and liquid, and Eq. (10) 
were used just for SCF, but Eqs. (13) and 
(21) and real fluid theory (Eq (22)) were 
used for SCF, liquid and gas. 
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Table 4: Correlations and equations for infinite dilution diffusion coefficients 
 Infinite dilution diffusion coefficients Equations and correlations 
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Table 4: Continued 
 Infinite dilution diffusion coefficients Equations and correlations 

(21)  DVVTBD  112  
Dymond-Hildebrand-Batschinski free-
volume expression [97, 98, 99] 

(22)
SR

B
LJ ξξ

Tk
D

,12,12
,12 

  
Real fluid theory [2] 

(23)
 

12

,12
12

2
,121,12 2

3

8

F

σg
Tkmπσρξ

eff
BeffR 

(24) 5.1
12

12
2

,121,12
4.0

2
3

8




T
Tkmπσρξ BeffS

(25)  6/12/1
12,12,12 8975.111532.1








  Tσσ LJeff

  
 
 

Table 5: Mean relative error for SCF, liquid and gas systems 

System NDPa NDPb NSa NSb 
 ANN Eq. (22) Eq. (21) Eq. (13) Eq. (10) Eq. (5) Eq. (6) Eq. (7) Eq. (8) 
 MRE 

Supercritical 3277 3297 111 111  3.00 4.16 4.02 40.34 7.84 12.77 15.93 16.71 76.16 
Liquid 549 548 88 87  2.99 5.66 5.83 38.56 - 43.85 44.19 80.98 45.39 
Gas 252 251 32 28  1.21 1.83 2.01 43.30 - - - - - 
Total 4078 4096 231 226  2.88 4.22 4.14 40.28 7.83 17.20 19.96 25.87 71.77 
a NDP and NS for ANN model. 
b NDP and NS for literature [2]. 

 
     The minimum and maximum relative 
errors by ANN are 0.1 % (n-Octacosane-
Carbon dioxide liquid system and Carbon 
monoxide-Helium gas system) and 9.73 % 
(Carbon dioxide-Acridine SCF system). 
Number of data of carbon dioxide-Acridine 
system are 6 which in comparison with 
other supercritical systems is a low value. 
So probability of using these data by ANN 
comes down and for estimating of infinite 
dilute diffusion coefficient, ANN model 
utilizes other substances data that have 
similar properties to Acridine and this 
subject caused low accuracy estimation. 
Also total results are available in Table 5. 
As shown in this table the MRE for ANN in 
SCF, liquid and gas systems is 3.00, 2.99 
and 1.21 %, respectively and average of 
total error is 2.88 %.Total relative error for 
Eqs. (5)-(8) are changed from 17.2 to 71.77 
% (see Table 5). Eq. (10) that is used just 
for SCF has a MRE=7.83 %, and Eq. (13) 
has a poor results (MRE=40.28 %). Eqs. 
(22) (Real fluid theory) and (21) have a 
remarkable accuracy and MRE of 4.22 and 
4.18 %, respectively.  
 
 

3. Conclusions 
 In this work, artificial neural 
network models were investigated for 
estimation of infinite dilute diffusion 
coefficient of binary SCF (111 
systems/3277 points), liquid (88 
systems/549 points) and gas (32 
systems/252 points) systems. For each one 
of SCF, liquid and gas systems a three-layer 
feed forward neural network with train 
algorithm of LM was used. In hidden and 
output layers, transfer function of ‘tansig’ 
and ‘purelin’ were used, respectively. By 
applying each one of the networks on three-
fourths of data, optimal number of neurons 
in hidden layer for SCF, liquid and gas 
systems is 21, 19 and 18, respectively. 
Calculation results are shown high accuracy 
of neural network models for SCF, liquid 
and gas systems by MRE equal to 3.00, 2.99 
and 1.21 %, respectively. 
 

Nomenclature 
A parameter in Eq. (10) 
B parameter in Eqs. (10) and (21) 

jb bias of j th neuron 

D  tracer diffusion coefficient, s/cm 2  
F correction factor in Eq. (23) 
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f  transfer function 
 σg  radial distribution function at contact

k  parameter in Eq. (10) 
12k  binary interaction parameter 
dk12  interaction parameter in Eq. (15) 

Bk  Boltzmann constant, 
Ks/cm g. 10380658.1 2216  

M  molecular weight, g/mol  
m  mass of a molecule, g  

NS  number of systems 
jO  output of j th neuron 

P  pressure, MPa  
T  temperature, K  
V  molar volume, mol/cm3  

DV  parameter in Eq. (21), mol/cm3  
jiw  synaptic weight corresponding to i

th synapse j th neuron 

jkw  synaptic weight corresponding to k

th synapse j th neuron 

ix  i th input signal to j th neuron 
Greek letters 
β  parameter in Eq. (8) 

χ input value of neural network 
Bkε / Lennard–Jones energy parameter, K  

  dimensionless association factor of 
the solvent 

η viscosity, cP  
ρ density number, -1cm  
σ molecular diameter, cm  
ξ friction coefficient 
Subscripts 
1 solvent 
2 solute 
12 binary property 
bp boiling point 
c critical property 
eff effective hard sphere diameter 
LJ Lennard–Jones fluid 
R repulsive contribution 
r reduced property 
S soft attractive contribution 
Superscripts 
 reduced quantity 
HL hidden layer 
OL output layer 
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