[1] Yang, Y. and Shen, Sh. (2009). "Numerical simulation on non-equilibrium spontaneous condensation in supersonic steam flow." Int. Commun. Heat. Mass. Tran., Vol.36, No. 3, pp. 902–907.
[2] Mahpeykar, M.R. and Teymourtash, A.R. (2004). “Effects of friction factor and inlet stagnation conditions on the self-condensation of steam in a supersonic nozzle.” Sci. Iranica, Vol. 11, No. 4, pp. 269-282.
[3] Koo, A. Brooks, G.A. and Nagle, M. (2008). “Nucleation and growth of Mg condensate during supersonic gas quenching.” J. Cryst. Growth, Vol. 310, No.10, pp. 2659–2667.
[4] Guha, A. and Young, J.B. (1991). “Time-marching prediction of unsteady condensation phenomena due to supercritical heat addition.” Proc. conf. on Turbomachinery: Latest Developments in a Changing Scene, London, pp. 167-177.
[5] Cinar, G., Yilbas, B. and Sunar, S. M. (1997). “Study into nucleation of steam during expansion through a nozzle.” Int. J.Multiphas. Flow., Vol. 23, No. 6, pp. 1171-118.
[6] White, A.J. and Hounslow, M.J. (2000). ”Modelling droplet size distributions in poly-dispersed wet-steam flows.” Int. J. Heat. Mass. Tran., Vol.43, No. 11, pp. 1873-1884.
[7] Dykas, S. (2001). “Numerical calculation of the steam condensing flow.” Task quarterly, Vol.5, No.4, pp. 519–535.
[8] Gerber, A.G. and Kermani, M.J. (2004). “A pressure based Eulerian-Eulerian multi-phase model for nonequilibrium condensation in transonic steam flow.” Int. J. Heat. Mass. Tran., Vol.47, No.10, pp. 2217–2231.
[9] Dykas, S. and Wroblewski, W. (2012). “Numerical modelling of steam condensing flow in low and high pressure nozzles.” Int. J. Heat. Mass. Tran., Vol. 55, No. 21, pp. 6191–6199.
[10] Moore, M.J., Walters, P.T., Crane, R.I. and Davidson, B.J. (1973). “Predicting the fog drop size in wet steam turbines”, 4th Wet Steam Conf. Institute of Mechanical Engineers (UK), University of Warwick, pp. C37/73.
[11] Kermani, M.J. and Gerber, A.G. (2003). “A general formula for the evaluation of thermodynamic and aerodynamic losses in nucleating steam flow.” Int. J. Heat. Mass. Tran., Vol.46, No. 17, pp. 3265–3278
[12] Krol, T. (1971). “Results of optical measurements of diameters of drops formed due to condensation of steam in a de Laval nozzle(in polish).” Prace lnstytutu Maszyn Przeplywowych (Trans. Inst. Fluid Flow Machinery), Vol.187, pp. 199
[13] Bakhtar, F. and Mohammadi Tochai, M. T. (1980). “An Investigation of Two-Dimensional Flows of Nucleating and Wet Steam by the Time-Marching Method.” Int. J. Heat. Fluid Flow, Vol.2, No. 1, pp. 5–18
[14] Treybal, R.E. (1980). “Mass-Transfer Operations” 5th.Ed. McGraw-Hill Pub, New York.