[1] Victoria, H. P., Silva, G. A. I., Estrada, M. R., Hall, K. R. A. (2013). “Correlation to predict speed of sound in liquids: 1. n-Alkanes (≥ C5) and their mixtures at high pressures”, Fluid Phase Equilibria., Vol. 338, PP.119-127.
[2] Bobik, M. (1978). “Thermodynamic quantities for liquid benzene 1. Sound velocities between 283 and 463 K and up to 62 MPa”, J. Chem. Thermodynamics., Vol. 10, PP.1137-1146.
[3] Niepmann, R. (1984). “Thermodynamic properties of propane and n-butane 2. Speeds of sound in the liquid up to 60 MPa”, J. Chem. Thermodynamics., Vol. 16, PP.851-860.
[4] Bobik, M., Niepmann, R., Marius, W. (1979). “Thermodynamic quantities for liquid carbon tetrachloride 1. Sound velocities between 265 and 435 K and up to 62 MPa”, J. Chem. Thermodynamics., Vol. 11, PP.351-357.
[5] Niepmann, R., Esper, G. J., Riemann, K. A. (1987). “Thermodynamic properties of chlorodifluoromethane and dichloromethane Speeds of sound in the liquid up to 60 MPa”, J. Chem. Thermodynamics., Vol. 19, PP.741-749.
[6] Pandey, J. D., Vyas, V. P., Jain, Dubey, G. P., Tripathi, N., Dey, R. (1999). “Speed of sound, viscosity and refractive index of multicomponent systems: Theoretical predictions from the properties of pure components”, J. Mol. Liquids., Vol. 81, PP.123-133.
[7] Queimada, A. J., Coutinho, J. A. P., Marrucho, I. M., Daridon, J. L. (2006). “Corresponding-States Modeling of the Speed of Sound of Long-Chain Hydrocarbons”, Int. J. Thermophysics., Vol. 27, PP.1095-1109.
[8] Maghari, A., Sadeghi, M. S. (2007). “Prediction of sound velocity and heat capacities of n-alkanes from the modified SAFT-BACK equation of state”, Fluid Phase Equilibria., Vol. 252, PP.152-161.
[9] Scalabrin, G., Marchi, P., Grigiante, M. (2007). “Speed of sound predictive modeling in a three-parameter corresponding states format: Application to pure and mixed haloalkanes”, Exp. Therm. Fluid. Sci., Vol. 31, PP.261-278.
[10] Pardini, P., Iriarte, D.I., Pomarico, J.A., Ranea-Sandoval, H.F. (2016). “Photoacoustic determination of speed of sound in binary mixtures of water and ethyl and methyl alcohol”, Opt. Int. J. Light. Elect. Opt., Vol. 127, PP.2260–2265.
[11] Nascimento, F.P., Paredes, M.L.L., Mehl, A., Lucena, R.S., Costa, A.L.H., Pessoa, F.L.P. (2016). “High pressure speed of sound and density of (decalin + n-decane), (decalin + n-hexadecane) and (n-decane + n-hexadecane) systems and thermodynamic modeling with PHCT equation of state”, J. Chem. Thermodynamics., Vol. 95, PP.124–135.
[12] H.C. Shin, R. Prager, H. Gomersall, N. Kingsbury, G. Treece, A. Gee. (2010). “Estimation of speed of sound in dual-layered media using medical ultrasound image deconvolution”, Ultrasonics, Vol. 50, PP.716–725.
[13] H.C. Shin, R. Prager, H. Gomersall, N. Kingsbury, G. Treece, A. Gee. (2010). “Estimation of Average Speed of Sound Using Deconvolution of Medical Ultrasound Data”, Ultra. Med. Bio., Vol. 36, PP.623–636.
[14] Lainez, A., Gopal, P., Zollweg, J. A., Streett, W. B. (1989). “Speed-of-sound measurements for liquid trichlorofluoromethane under pressure”, J. Chem. Thermodynamics., Vol. 21, PP.773-777.
[15] Takagi, T., Sakura, T., Guedes, H. J. R. (2002). “Speed of sound in liquid cyclic alkanes at temperatures between (283 and 343) K and pressures up to 20 MPa”, J. Chem. Thermodynamics., Vol. 34, PP.1943-1957.
[16] Takagi, T., Sawada, K., Urakawa, H., Ueda, M., Cibulka, I. (2004). “Speed of sound in liquid tetrachloromethane and benzene at temperatures from 283.15 K to 333.15 K and pressures up to 30 MPa”, J. Chem. Thermodynamics., Vol. 36, PP.659-664.
[17] Takagi, T., Sawada, K., Urakawa, H., Ueda, M., Cibulka, I. (2004). “Speeds of Sound in Dense Liquid and Vapor Pressures for 1,1-Difluoroethane”, J. Chem. Eng. Data., Vol. 49, PP.1652-1656.
[18] Daridon, J. L., Lagrabette, A., Lagourette, B. (1998). “Speed of sound, density, and compressibilities of heavy synthetic cuts from ultrasonic measurements under pressure”, J. Chem. Thermodynamics., Vol. 30, PP.607-623.
[19] Khasanshin, T. S., Poddubskij, O. G., Shchamialiou, A. P., Samuilov, V. S. (2006). “The thermodynamic properties of 1-alkenes in the liquid state: 1-Hexadecene”, Fluid Phase Equilibria., Vol. 245, PP.26-31.
[20] NIST Chemistry WebBook, NIST Standard Reference Database, National Institute of Standards and Technology, Gaithersburg MD, 2005, http://webbook.nist.gov.