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Abstract

Underbalanced drilling as multiphase flow is done in oil drilling op-
eration in low pressure reservoir or highly depleted mature reservoir. 
Correct determination of the pressure loss of three phase fluids in drill-
ing annulus is essential in determination of hydraulic horsepower re-
quirements during drilling operations. In this paper the pressure loss 
of solid-gas-liquid three-phase fluids flow in inclined annulus was esti-
mated using artificial neural network (ANN). Experimental data which 
are available in the literature were used for design of ANN. Pressure 
loss as output of ANN, was estimated from five effective parameters as 
inputs of ANN including gas and liquid superficial velocities, the incli-
nation from horizontal, rate of penetration (ROP), pipe rotation speed 
(RPM). The correlation coefficient between predicted and experimen-
tal value for train and test data is 0.998 and 0.997 respectively.The root 
mean square error (RMS) and average absolute percent relative error 
(AAPE) for train data are 0.0082 and 2.77% and for test data, they are 
0.0108 and 3.68 % respectively. The reliable results showed the high 
ability of artificial neural network for estimating pressure loss of three 
phase flow in annulus.
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1. Introduction

Underbalanced drilling (UBD) is used in devel-
opment of low-pressure reservoir or highly 
depleted mature reservoir because of mini-

mizing of formation damage and lost circulation, 
increasing penetration rate, and extending bit life. 

There are many techniques for underbalanced drill-
ing including gas, foam, gasified-liquid and liquid 
underbalanced drilling. Gasified fluid drilling has 
many applications, because of its wide adjustable 
equivalent circulating density. The introduction of 
gaseous phase to the drilling fluid circulating sys-
tem complicates prediction of drilling hydraulics 
and solids transport. The proper underbalanced 
drilling is determined by suitable design of hydrau-
lics requirements. The underbalanced drilling with 
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gasified-liquid as three-phase flow is more compli-
cated with respect to single-phase fluid, because of 
the complicated characteristics of multiphase fluid 
flow [1, 2]. Therefore proper design of hydraulics 
parameters of aerated mud flows in order to esti-
mate accurately desired bottom hole pressure and 
to optimize fluid flow rates is necessary.

Extensive theoretical and experimental stud-
ies of two-phase flow through pipes have been 
performed. These studies are general models and 
mechanistic models. Previous developed mod-
els for two-phase fluid flow which named gen-
eral models, were independent from flow pattern 
description. The general model considered two-
phase fluid flow as single phase flow or as a sepa-
rated two-phase flow [3, 4].

The studies that the researchers firstly deter-
mine the flow patterns are mechanistic models. 
The main step in mechanistic modeling is the ac-
curate determination of the flow patterns, prop-
erly. Many studies carried out with the aim of es-
timating the flow patterns of two-phase fluids in 
pipes.The main mechanistic models are based on 
the presented flow patterns [5, 6, 7]. Some main 
studies in two-phase fluids flowing through annu-
lus were conducted by many researchers [2, 8-14]. 
There are less theoretical and experimental stud-
ies on particles transport in solid-gas-liquid multi-
phase flow through pipes and annuli [15-20].

Most of the mentioned models (correlations 
and mechanistic models) consider either the two-
phase flow as a single-phase fluid flow or they have 
been applied to a special range of conditions such 
as well geometry and inclination and flow condi-
tion. Such models cannot be generalized due to the 
nature of a UBD. There is not an analytical solu-
tion for multiphase pressure loss estimation. So it 
is crucial to develop a simple and proper method 
to explain the behavior of multiphase fluid flow 
through annuli in horizontal and inclined wells 
under UBD condition.

Artificial neural network (ANN) has been mo-
tivated right from its inception by the recognition 
that the human brain computes in an entirely dif-
ferent way from the conventional digital computer 
[21]. It can be used to model various complex and 
nonlinear problems in addition to other statistical 
methods [22- 24]. ANN has been used in the multi-
phase flow fieldwith acceptable results compared 
with the conventional methods such as correla-
tions and mechanistic models [26-29]. The aim 
of this study is to estimate pressure loss of three 
phase (solid- liquid- gas) flow through inclined an-
nuli using simple and reliable ANN model that it 
has not been done in previous works.

2. Artificial Neural Network (ANN) 

ANNs are a wide class of flexible nonlinear regres-
sion models, data reduction models, and nonlinear 
dynamical systems. They consist of an often large 
number of neurons, i.e. simple linear or nonlinear 
computing elements, interconnected in often com-
plex ways and often organized into layers. ANNs 
mimic the human mind neural network using con-
ventional digital computer [21, 30]. A typical neu-
ron structure is shown in Fig. 1. ANN has a multi-
layer structure including input layer (p), middle 
layer (hidden layer) with activation function (Fig. 
2) and output layer (a). The middle layer is built 
upon many simple nonlinear functions that play 
the role of neurons in a biological system [31].

There are different types of neural networks 
that differ in the network architecture and neuron 
structure such as back propagation neural network 
(BPNN) and radial basis function network. The 
feed-forward neural networks with back propaga-
tion (BP) learning are very powerful in function 
optimization modeling [25, 32, 33]. Backpropaga-
tion neural networks are recognized for their pre-
diction capabilities and ability to generalize well 
on a wide variety of problems. These models are 
supervised networks, on the other words, trained 
with both inputs and target outputs. During train-
ing, the network tries to match the outputs with 
the desired target values. BPNN technique has a 
main disadvantageas over fitting phenomenon. 
Early stopping and automated Bayesian regular-
ization methods are themost common methodsto 
avoid over fitting [31]. In this study, automated 
Bayesian regularization method [25] was used for 
avoiding over fitting problem.

3. Pressure Loss Prediction of Three-
Phase Flow using ANN

In this paper, a BPNN code with automated Bayes-
ian regularization algorithm using MATLAB soft-
ware was used for pressure loss prediction.

124 three phase flow data sets including cut-
ting-gas-water flow for three degree from hori-
zontal (0, 45 and 77.5) eccentric annulus (0.623 
eccentricity) extracted from literature were used 
to train and test the ANN model. The geometry 
of annulusis a test section with approximately 21 
ft. long with 2.91 in (inner diameter) transparent 
acrylic casing with a 1.86 in (outer diameter) inner 
drill pipe. The inner pipe is attached to a variable 
speed motor, which enables the rotation of the 
drill pipe at variable speed (Fig. 3) [11, 19].
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Five variable parameters including gas (air) 
and liquid (water) superficial velocity (VSG and 
VSL), inclination from horizontal (Ɵ), rate of pen-
etration (ROP) that relate to solid phase, pipe 
rotation speed(RPM) were used as inputs of the 
network and pressure loss (dP/dL) in eccentric 
annulus was used as output of network (Table 1). 
The characteristics of water and air (rheological 
parameters and density), geometry of annulusand 
cuttings characteristics (particle diameter, 0.079 
in; cutting density, 23.05 ppg; cutting bed porosity, 
36%) in all tests were considered constant [11]. 
Eccentric ratio in all tests was 0.623. So they are 
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accurate predictions are; the root mean square 
error (RMS), average absolute percent relative er-
ror (AAPE) and the correlation coefficient (R). The 
RMS measures the data dispersion around zero 
deviation, given by:
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For this purpose, 99 samples of 124 samples were randomly used to train of the network and 

25 samples were used for testing BPNN.  

The correlation coefficient (R), AAPE and RMS were used for comparison results of ANN. 

Figure 5 shows the estimated (predicted) pressure loss versus the experimental (measured) 

values for the training data. The correlation coefficient (R) is 0.998 with an RMS and AAPE 

value of 0.0082 and 2.77%. These results show correct training of BPNN. Testing and 

evaluation of BPNN was done using test data. The comparison of the predicted pressure loss 

versus the measured (experimental) pressure loss for test data is shown in Figure 6. The 

correlation coefficient (R) is 0.997 and the RMS and AAPE are 0.0108 and 3.68 %, 

respectively. These results show high ability of simple BPNN method for pressure loss 

estimation of three phase flows. 

 

Figure 5. BPNN pressure loss versus measured pressure loss for the training data 
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Figure 6. BPNN pressure loss versus measured pressure loss for the test data 
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Figure 5. BPNN pressure loss versus measured pressure 
loss for the training data.

Figure 6. BPNN pressure loss versus measured pressure 
loss for the test data.
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were randomly used to train of the network and 
25 samples were used for testing BPNN. 

The correlation coefficient (R), AAPE and RMS 
were used for comparison results of ANN. Figure 
5 shows the estimated (predicted) pressure loss 
versus the experimental (measured) values for 
the training data. The correlation coefficient (R) 
is 0.998 with an RMS and AAPE value of 0.0082 
and 2.77%. These results show correct training of 

BPNN. Testing and evaluation of BPNN was done 
using test data. The comparison of the predicted 
pressure loss versus the measured (experimental) 
pressure loss for test data is shown in Figure 6. The 
correlation coefficient (R) is 0.997 and the RMS and 
AAPE are 0.0108 and 3.68 %, respectively. These re-
sults show high ability of simple BPNN method for 
pressure loss estimation of three phase flows.

 

5. Conclusions

This study proposed a BPNN model for pressure 
lossestimation of three phase flow in inclined ec-
centric annulus from affected parameters includ-
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Figure 7. Predicted pressure loss versus measured pres-
sure loss for train samples.

Figure 8. Predicted pressure loss versus measured pres-
sure loss for test samples.
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ing, liquid and gas superficial velocities (VSL and 
VSG), pipe rotation speed (RPM), rate of penetra-
tion (ROP) and inclination of annulus from hori-
zontal (Ɵ).Ten neurons with logsig activation func-
tion in hidden layer of BPNN was selected by trial 
and error. The correlation coefficient of train and 
test data is 0.998 and 0.997, respectively and the 
RMS and AAPE of train data are 0.0082 and 2.77% 
and for test data, they are 0.0108 and 3.68 %, re-
spectively. The results showed that the developed 
model provides predictions in acceptable agree-
ment with target data. This model is simple and 
reliable according to its independence from flow 
pattern determination, non-complexity and high 
accuracy in estimation of pressure loss of three 
phase flow.

Nomenclature

A Cross sectional area of annuli (in2)
AAPE Average absolute percent relative error (%)
ANN Artificial neural network (-)
BPNN Back propagation neural network
dP/dL Pressure loss (psi/ft)
N Number of samples (–)
QG Gas flow rate (scf)
QL Liquid flow rate (gpm)
R Correlation coefficient (-)
RMS Root mean squared error (-)
ROP Rate of penetration (ft/h)
RPM pipe rotation speed (1/min)
VSL Liquid superficial velocity (ft/s)
VSG Gas superficial velocity (ft/s)
Ɵ Inclination from horizontal (degree)
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