[1] Moktadir, Z. (2014). “ Graphene nanoelectrome chanics (NEMS), in Graphene: properties, preparation, characterisation and devices, First edition. London, GB, Woodhead , pp. 341-358.
[2] Geim, A.K. and Novoselov, K.S. (2007). “The rise of grapheme.” Nature Materials , Vol. 6, No. 3, pp. 183-191.
[3] Stankovich, S., Dikin, D.A., Dommett, G. H., Kohlhaas, K.M., Zimney, E.J. (2006). “Graphene-based composite materials.” Nature , Vol. 442, No. 7100, pp. 282-286.
[4] Geim, A.K. (2009). “Graphene: status and prospects.” Science, Vol. 324, No. 5934, pp. 1530- 1534.
[5] Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. and Firsov, A.A. (2004). “ Electric field effect in atomically thin carbon films.” Science, Vol. 306, No. 5696, pp. 666-669 44.
[6] Kim, K.S., Zhao, Y., Jang, H, Lee, S.Y., Kim, J.M. (2009). “Large-scale pattern growth of graphene films for stretchable transparent electrodes.” Nature , Vol. 457, No. 7230, pp. 706-710.
[7] Kovtyukhova, N.I., Ollivier, P.J., Martin, B.R., Mallouk, T.E., Chizhik, S.A. (1999). “Layer-by- layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations.” Chemistry of Materials , Vol. 11, No. 3, pp. 771-778.
[8] Wang, Y., Xie, L., Sha, J., Ma, Y., Han, J. (2011). “Preparation and chemical reduction of laurylamine-intercalated graphite oxide.” Materials Science, Vol. 46, No. 10, pp. 3611-3621.
[9] Yoon, S., and In, I. (2011). “Role of poly (N-vinyl-2-pyrrolidone) as stabilizer for dispersion of graphene via hydrophobic interaction.” Materials Science, Vol. 46, No. 5, pp. 1316-1321.
[10] Liu, J., Cui, L., and Losic, D. (2013). “Graphene and graphene oxide as new nanocarriers for drug delivery applications.” Acta Biomaterialia, Vol. 9, No. 12, pp. 9243-9257.
[11] Dreyer, D.R., Park, S., Bielawski, C.W. and Ruoff, R.S. (2010). “The chemistry of graphene oxide.” Chemical Society Reviews, Vol. 39, No. 1, pp. 228-240.
[12] Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z. (2010). “Improved synthesis of graphene oxide.” ACS Nano, Vol. 4, No. 8, pp. 4806-4814.
[13] Stankovich, S., Piner, R.D., Chen, X., Wu, N., Nguyen, S.T., and Ruoff, R.S. (2006). “Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate).” Journal of Materials Chemistry, Vol. 16, No. 2, pp. 155-158.
[14] Brodie, B.C. (1859). “On the Atomic Weight of Graphite.” Philosophical Transactions of the Royal Society of London, Vol. 149, pp. 249-259.
[15] Staudenmaier, L. (1898). “Verfahren zur Dar-stellung der Graphitsaure.” Berichte der Deutschen Chemischen Gesellschaft, Vol. 31, No. 2, pp. 1481- 1487.
[16] Hummers, W.S. and Offeman, R.E. (1958). “Preparation of Graphitic Oxide.” American Chemical Society, Vol. 80, No. 6, pp. 1339-1339.
[17] Chua, C.K. and Pumera, M. (2014). “Chemical reduction of graphene oxide: a synthetic chemistry viewpoin.” Chemical Society Reviews , Vol. 43, No. 1, pp. 291-312.
[18] Huang, X., Qi, X., Boey, F. and Zhang, H. (2012). “Graphene-based composites.” Chemical Society Reviews, Vol. 41, No. 2, pp. 666-686.
[19] Lightcap, I.V. and Kamat, P.V. (2012). “Graphitic design: prospects of graphene-based nanocomposites for solar energy conversion, storage, and sensing.” Accounts of Chemical Research, Vol. 46, No. 10, pp. 2235-2243.
[20] Sun, X., Liu, Z., Welsher, K., Robinson, J.T., Goodwin, A., Zaric, S. and Dai, H. (2008). “Nano-graphene oxide for cellular imaging and drug delivery.” Nano Research , Vol. 1, No. 3, pp. 203- 212.
[21] Chung, C., Kim, Y.K., Shin, D., Ryoo, S.R., Hong, B.H., Min, D.H. (2013). “Biomedical applications of graphene and graphene oxide.” Accounts of Chemical Research , Vol. 46, No. 10, pp. 2211-2224.
[22] Wang, Y., Li, Z., Wang, J., Li, J. and Lin, Y. (2011). “Graphene and graphene oxide: biofunctionalization and applications in biotechnology.” Trends in Biotechnology , Vol. 29 , No. 5, pp. 205-212.
[23] Pyun, J. (2011).”Graphene oxide as catalyst: application of carbon materials beyond nanotechnology.” Angewandte Chemie International Edition , Vol. 50, No. 1, pp. 46-48.
[24] Kim, J., Cote, L. J., Kim, F., Yuan, W., Shull, K. R., and Huang, J. (2010). “Graphene oxide sheets at interfaces.” American Chemical Society , Vol. 132, No. 23, pp. 8180-8186.
[25] Cote, L.J., Kim, J., Tung, V.C., Luo, J., Kim, F., Huang, J. (2010). “Graphene oxide as surface tant sheets.” Pure and Applied Chemistry , Vol. 83, No. 1, pp. 95-110.
[26] He, H., Riedl, T., Lerf, A. and Klinowski, J. (1996). “Solid-state NMR studies of the structure of graphite oxide.” Physical Chemistry, Vol. 100, No. 51, pp. 19954-19958.
[27] Dimiev, A.M. and Tour, J.M. (2014). “Mechanism of graphene oxide formation.” ACS Nano , Vol. 8, No. 3, pp. 3060-3068.
[28] Higginbotham, A., Kosynkin, D., Sinitskii, A., Sun, Z., Tour, J.M. (2010). “Lower- defect graphene oxide nanoribbons from multiwalled catbon nanotubes.” ACS Nano , Vol. 4, No. 4, pp. 2059-2069.
[29] Shi, C., Chen, L., Xu, Z., Jiao, Y., Li, Y. (2012). “Monitoring influence of chemical preparation procedure on the structure of graphene nanosheets.” Physica E: Low-dimensional Systems and Nanostructures, Vol. 44, No.7-8, pp. 1420-1424.
[30] Shahriary, L. and Athawale, A.A. (2014). “Graphene oxide synthesized by using modified hummers approach.” Renew. Energy and Env. Engg , Vol. 2, No. 1, pp. 58-63.
[31] Tuinstra, F. and Koenig, J.L. (1970). “Raman spectrum of graphite.” Chemical Physics , Vol. 53, No. 3, pp. 1126-1130.
[32] Ferrari, A.C. and Robertson, J. (2000). “Interpretation of Raman spectra of disordered and amorphous carbon.” Physical Review B, Vol. 61, No. 20, pp. 14095-14107.
[33] Kudin, K.N., Ozbas, B., Schniepp, H.C., Prud’Ho-mme, R.K., Aksay, I.A. and Car, R. (2008). “Raman spectra of graphite oxide and functionalized graphene sheets.” Nano Letters , Vol. 8, No. 1, pp. 36-41.
[34] Guo, H., Wang, X., Qian, Q., Wang, F., Xia, X. (2009). “A green approach to the synthesis of graphene nanosheets.” ACS Nano , Vol. 3, No. 9, pp. 2653-2659.