Online Detection of Hydrodynamic Changes in Fluidized Bed using Cross Average Diagonal Line

Document Type : Original Paper

Authors

Multiphase Systems Research Lab, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box 11155/4563, Tehran, Iran.

Abstract

Online detection of hydrodynamics of gas-solid fluidized bed was characterized using pressure fluctuations by cross recurrence plot (CRP) and cross recurrence quantification analysis (CRQA). Experiments were conducted in a lab scale fluidized bed of various particle sizes 150 μm, 280 μm and 490 μm at different gas velocities. Firstly, pattern changes of cross recurrence plot were discussed and then reference states was selected. Afterwards, cross average diagonal line (CLave) of other states corresponding to reference states were obtained. It was found that cross average diagonal line of non-normalized data initially decreases and then increases with increasing the gas velocity. When the signal is initially normalized, cross average diagonal line does not change with the superficial gas velocity. It was concluded that cross average diagonal line could be used for detecting small changes of particle size and if a proper reference state is chosen, it can be perceived as a powerful index for detecting changes in the size of particles in a fluidized bed.

Keywords


[1] Kunii, D. and Levenspiel, O., (1991).  Fluidization Engineering . Butterworth-Heinemann, 2nd ed.
[2] Marwan, N., Romano, M.C., Thiel, M., and Kurths,  J., (2007). “Recurrence plots for the analysis of  complex systems.”  Physics Reports,  Vol. 438, pp.  237-329.
[3] van der Schaaf, J., Schouten, J., and van den  Bleek, C., (1998). “Origin, propagation and attenuation of pressure waves in gas—solid  fluidized  beds.”  Powder  Technology,  Vol. 95, pp.  220-233.
[4] Fan, L., Ho, T.C., Hiraoka, S., and Walawender,  W., (1981). “Pressure fluctuations in a fluidized bed.” AIChE Journal,  Vol. 27, pp. 388-396.
[5] Daw,  C.S.,  Lawkins,  W.F.,  Downing,  D.J.  and  Clapp Jr, N.E., (1991). “Chaotic characteristics of a complex gas-solids flow,”  Physical  Review  A,  Vol. 41, p. 1179.
[6] Daw, C. and Halow, J., (1991). “Characterization of void age and pressure signals from fluidized beds using deterministic chaos theory,” Proceed ings  of  the  11th   International  Conference on Fluidized Bed Combustion,  pp. 777-786.
[7] Fan, L., Kang, Y., Neogi, D. and Yashima, M.,  (1993). “Fractal analysis of fluidized particle behavior in liquid-solid fluidized beds,”  AIChE Journal,  Vol. 39, pp. 513-517.
[8] Hay, J., Nelson, B., Briens, C. and Bergougnou,  M., (1995). “The calculation of the characteristics of a chaotic attractor in a gas-solid fluidized bed.”  Chemical Engineering Science,  Vol.  50, pp. 373-380.
[9] Bai, D., Bi, H. and Grace, J., (1997). “Chaotic behavior of fluidized beds based on pressure and  voidage fluctuations.”  AIChE  Journal,   Vol.  43,   pp. 1357-1361.
[10] Bai, D., Shibuya, E., Nakagawa, N. and Kato, K.,  (1997). “Fractal characteristics of gas-solids  flow in a circulating fluidized bed.” Powder  Technology,  Vol. 90, pp. 205-212.
[11] van Ommen, J.R., Coppens, M.O., van den Bleek,  C. M. and Schouten, J. C., (2000). “Early warning of agglomeration in fluidized beds by attractor comparison.”  AIChE Journal,  Vol. 46, pp.  2183-2197.
[12] Diks, C., Van Zwet, W., Takens, F. and DeGoede,  J., (1996). “Detecting differences between delay vector distributions.”  Physical  Review  E,  Vol. 53, p. 2169.
[13] Schouten, J.C. and van den Bleek, C.M., (1998).  “Moni   toring the quality of fluidization using the  short-term predictability of pressure fluctuations.”  AIChE Journal,  Vol. 44, p. 48-60.
[14] Zarghami, R., Mostoufi, N. and Sotudeh-Gharebagh, R., (2008). “Nonlinear characterization of pressure fluctuations in fluidized beds.” Industrial & Engineering Chemistry Research, Vol.   47, pp. 9497-9507.
[15] Eckmann, J.P., Kamphorst, S.O. and Ruelle, D.,  (1987). “Recurrence plots of dynamical systems.” Eu rophysics  Letters,  Vol. 4, pp. 973-977.
[16] Babaei, B., Zarghami, R., Sedighikamal, H., Sotudeh-Gharebagh, R. and Mostoufi, N., (2012).  “Investigat ing the hydrodynamics of gas–solid  bubbling  fluidization  using  recurrence  plot.”  Advanced  Powder  Technology,  Vol. 23, pp. 380-386.
[17] Babaei, B., Zarghami, R. and Sotudeh-Gharebagh, R., (2013). “Monitoring of fluidized beds  hydrody    namics using recurrence quantification  analysis.”  AIChE Journal,  Vol. 59, pp. 399-406.
[18] Sedighikamal,  H.  and  Zarghami,  R.,  (2013).  “Dynamic characteristics of bubbling fluidization through recurrence rate analysis of pressure fluctuations.”  Particuology,  Vol. 11, pp.  282-287.
[19] Tahmasebpour, M., Zarghami, R., Sotudeh-Gharebagh, R. and Mostoufi, N., (2013). “Characterization of various structures in gas-solid fluidized  beds by recurrence quantification analysis.”  Particuology, Vol. 11, pp. 647-656.
[20] Marwan, N. and Kurths, J., (2002). “Nonlinear  analysis of bivariate data with cross recurrence plots.”  Physics  Letters  A,  Vol. 302, pp. 299-307.
[21] March, T., Chapman, S. and Dendy, R., (2005).  “Recur    rence plot Statistics and the effect of  embed ding.”  Physica D: Nonlinear Phenomena,  Vol. 200, pp. 171-184.
[22] Thiel, M., Romano, M.C. and Kurths, J., (2004).  “How  much  information  is  contained  in  a recur rence plot?.” Physics  Letters  A,  Vol.  330,   pp. 343-349.
[23] Johnsson, F., Zijerveld, R., Schouten, J., van den  Bleek, C. and Leckner, B., (2000). “Characterization of flu idization regimes by time-series  analysis  of  pressure  fluctuations,” International  Journal  of  Multiphase  Flow,   Vol. 26, pp.  663-715.
[24] vander  Stappen,  M.L.M.,  (1996).  Chaotic  hydrody    namics  of fluidized beds. Ph.d Thesis,  Delft University of Technology.
[25] Wen, C. and Yu, Y., (1966). “A Generalized method for predicting the minimum fluidization velocity.” AIChE Journal,  Vol. 12, pp. 610-612.
[26] Schinkel,  S.,  Dimigen,  O.  and  Marwan,  N.,  (2008). “Selection of recurrence threshold for  signal detection.”  The  European  Physical  Journal Special Topics,  Vol. 164, pp. 45-53.
[27] Babaei, B., Zarghami, R., Sedighikamal, H., Sotudeh-Gharebagh, R. and Mostoufi, N., (2014). “Selec   tion of minimal length of line in recurrence quantification analysis.”  Physica  A:  Statistical Mechanics and its Applications,  Vol. 395,  pp. 112-120.
[28] Webber Jr, C.L. and Zbilut, J.P., (2005). “Recurrence quantification analysis of nonlinear dynamical systems.”  Tutorials in Contemporary  Nonlinear Methods for the Behavioral Sciences,  pp. 26-94.