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Abstract

Geometric programming is a mathematical technique, which has been 
developed for nonlinear optimization problems. This technique is 
based on the dual program with linear constraints. Determination of 
species concentrations in chemical equilibrium conditions is one of its 
applications in chemistry and chemical engineering fields. In this pa-
per, the principles of geometric programming and its computational 
method are presented. Also, for a chemical equilibrium, as an example, 
the concentrations of species for the ammonia synthesis reaction are 
determined. The obtained results are compatible with the experimen-
tal data available in the literature. This leads to the application of the 
geometric programming to estimate the concentrations in the equi-
librium conditions for reactions where the experimental data are not 
available.
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1. Introduction
owadays, optimization models and opera-
tion research methods have been exten-
sively used in solving many real and com-

plex problems in almost all aspects of science and 
engineering. Operations research methods deal 
with the assignment of limited resources to com-
petitor activities to achieve some pre-defined 
goals in different areas such as economics, busi-
ness, industry, and health care. Geometric Pro-
gramming (GP) is a technique developed for solv- 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ing algebraic nonlinear programming problems 
subject to nonlinear constraints. This technique 
was first proposed in 1961 by Zener, a director of 
science at Westinghouse Corporation. He discov-
ered that many engineering design problems con-
sisting of a sum of component costs could some-
times be minimized under suitable conditions [1]. 
The original mathematical development of the 
method used the arithmetic-geometric mean ine-
quality relationship between sums and products 
of positive numbers. In exact words, minimizing a 
posynomial1 function subject to posynomial ine-

1A posynomial is a function of the form:  
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Abstract

Silicon and aluminum sources are most important reactants in the 
synthesis of zeolite. The use of the silicon source has an important 
effect on the crystallization of zeolites. Also, it can change the prop-
erties of the end product. This work reports the influence of three 
common commercial silica sources such as colloidal silica (Ludox 
AM-30), fumed silica and water glass on the crystallinity of NaX zeo-
lite by hydrothermal method, also the adsorption of carbon dioxide on 
these samples have also been studied. The synthesized samples from 
different sources are characterized by X-ray diffraction (XRD), scan-
ning electron microscope (SEM), Fourier transformin frared (FT-IR) 
and nitrogen adsorption–desorption analysis. The sample obtained by 
fumed silica, colloidal silica and water glass is NaX phase. The percent-
age of crystallinity and surface area increased in the sequence: water 
glass< colloidal silica < fumed silica, also the sample of synthesized by 
Fumed silica (Z-F) with higher crystallinity, shows better performance 
in the adsorption process.
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1. Introduction

Zeolites are the most important family in crys-
talline microporous materials. The zeolite 
comprises infinitely extending three-dimen-

sional network of aluminum and silicon tetrahedra 
linked to each other by the sharing of oxygen ions 
with uniformly sized pores of molecular dimen-
sions [1]. Synthetic zeolites have been used in the 
petroleum industry in reactions such as cracking, 
alkylation, isomerization, shape reforming, hydro-

genation and dehydrogenation, adsorbents, cata-
lysts, ion-exchangers and separation processes. 
Zeolites are of particular interest because of their 
remarkable properties, such as high hydrothermal 
stability, catalytic activity, excellent shape selectiv-
ity and adsorption capacities [2-4].

The increase of CO2 emissions in the atmosphere 
leading to global warm in gas a serious environ-
mental problem. The adsorbents reported for CO2 
adsorption such as zeolites, activated carbons [5-
8], hydrotalcite [9] via physisorption in micropores 
[10]. Some of the more important zeolite types, 
which have been used in commercial applications, 
include the synthetic zeolite types A, X, Y [1]. Milton 
and Breck reported the discovery of zeolites A and 
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quality constraints and monomial equality con-
straints is called a geometric program in standard 
form [2]. 
Solving the dual problem with the linear con-
straints, instead of the primal nonlinear problem 
with nonlinear constraints, is the preference of 
the GP, which has revealed its vast applications in 
many engineering design problems. The GP has 
been applied for the chemical equilibrium condi-
tion in engineering design applications [3]. There 
are two major approaches to determining the 
composition of a chemical system at equilibrium: 
the thermodynamic and the kinetic approach. The 
thermodynamic approach is based on the idea 
that at equilibrium, the chemical system achieves 
the state of minimum free energy with these con-
straints at which mass cannot be created or de-
stroyed in a chemical reaction and charge balance 
must be conserved. The kinetic approach focuses 
on two kinds of reactions taking place in any 
chemical system. One type of reaction involves 
the conversion of reactants into products, and the 
other involves the conversion of products into 
reactants. Chemical equilibrium can be defined as 
the condition under which the rates of production 
and consumption of any component in the equi-
librium are equal, i.e., the composition of the 
overall chemical system is no longer changing 
with time. Selection of chemical reaction condi-
tions is important in chemical industries in order 
to design the process systems and to determine 
the amount of the interfered materials (and un-
desirable by-products) in the reactions at the 
equilibrium situation. Gibbs free Energy is an ap-
propriate thermodynamical function used to illus-
trate the equilibrium conditions at constant tem-
perature and pressure [4]. The definition of Gibbs 
free Energy (G) is:  

TSPVUG                                                       (1) 
where U is internal energy, P is pressure, V is vol-
ume, T is temperature, and S is entropy. In con-
ventional methods, the equilibrium constant has 
to be known for estimation of the composition of 
a chemical equilibrium system. The computation 
is based on solving a set of nonlinear equations 
corresponding to thermodynamical conditions, 
and mass and energy balances. The equilibrium 
                                                                                          
 where all the coordinates xi and coefficients ck are posi-
tive real numbers, and the exponents aik are real numbers. 
Posynomials are closed under addition, multiplication, 
and nonnegative scaling.  

constant is calculated using Eq. (2), where con-
stants , , , and I must be found through expen-
sive and time-consuming experiments [4]: 
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White et al. [5] calculated the equilibrium concen-
tration in ideal gas phase using the minimization 
of Gibbs free Energy method. They converted the 
logarithmic form for Gibbs free Energy of system 
into a quadratic function using the Taylor expan-
sion method. Akbari et al. [6] studied the equilib-
rium chemical reactions taking place in a con-
verter reactor of the KHORASAN Petrochemical 
Ammonia plant using the minimization of Gibbs 
free Energy method by the Davidon–Fletcher–
Powell optimization procedure and the penalty 
terms.  
Traditional methods of computing equilibrium 
compositions involve the simultaneous solutions 
to the appropriate set of equations, including the 
physical equilibrium equations. Recently, new 
methods, such as computer simulation, element 
balance approach, or, in a more systematic way, 
building a residue curve map, have been reported 
for solving the chemical equilibrium problem, 
including the simultaneous determination of both 
physical and chemical equilibrium. New algo-
rithms for the computation of the simultaneous 
chemical and physical equilibrium involve simu-
lations of reactive flash operations and the calcu-
lations of phase diagrams [7].  
Metha-heuristic methods have also been applied 
in phase stability and equilibrium calculations for 
global minimization of the tangent plane distance 
function and the Gibbs Energy function. Bonilla 
and Segovia [8] showed the effectiveness of the 
classical particle swarm optimization and Tabu 
search methods for the equilibrium calculations 
in multi-component reactive and non-reactive 
systems.  
This paper presents a theoretical method for de-
termining species concentrations at chemical 
equilibrium conditions and only one-phase reac-
tion. It is based on the application of geometric 
programming principles to solve the correspond-
ing systems of nonlinear equations.  
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2. Geometric Programming
The basic approach in GP modeling is to express a 
practical problem, such as an engineering analy-
sis or design problem, in GP format. In the best 
case, this formulation is precise; when this is not 
possible, we settle for an approximate formula-
tion. The general form of GP is [9]:

Minimize    
 


L ax
l

N

n
nll xcy

0
ln0

1 1
000

)(   (3) 
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0xn
 ,n = 1,2, ….,N 

where,
,00 c l ,0cml ,1m ,10  l .1ml

Lm is the number of the terms in the mth con-
straint and L0 is the number of terms in the objec-
tive function. In engineering of expensive and 
time-consuming experiments design formula-
tions, cml  is called the economic coefficient (rep-
resenting the effect of each decision on objective 
or constraints terms), xn  is a design decision var-
iable, and am ln  is a technological exponent of the
design variables. If all  s are positive, the pro-
gram is called a posynomial GP as:

)()( xxyy pC ll  (5) 

with: 
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then, y* will be determined [1] as: 
lw

L

l l

l

w
Cy 














1

*   (8) 

The conditions 



L

l
lw

1
1 and 




L

l
lwa

1
ln 0  are called 

the normality conditions and the orthogonality 
conditions, respectively. They are valid for Wl. 
Given Cl and optimal Wl, y* can be determined. 

The optimization problem (3)-(4) (and (5)) is 
reduced to find the optimal values of Wl. The 
above conditions are a system containing N+1 
equations and L variables. The posynomial func-
tion is defined as: 














 

 w
pCw
l

ll
L

l
ly

1

  (9) 

Using the arithmetic-geometric mean inequality 
and orthogonality conditions results in:  
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where, Wl is the dual variable and the right-hand 
side term is called the dual function. In GP, the 
optimal values of Wl are obtained first. Then, their 
corresponding dual objective values are calculat-
ed, which are equal to the primal objective values. 
Finally, the optimal values of Xn are obtained ac-
cording to Eqs. (5) and (6).  
The degree of difficulty is defined as L-(N+1), 
where L is the number of terms in all concerned 
posynomials and N is the number of independent 
variables. If the problem has zero degree of diffi-
culty, then its unique optimal solution is deter-
mined by solving a system of linear equations. 
Determining the optimal solution becomes harder 
as the degree of difficulty increases. There are 
many practical engineering design problems with 
low degrees of difficulty, although considering the 
normality and orthogonality conditions reveals 
some useful properties. 

3. Ammonia Reaction and its GP Mo-
del
It has been revealed that there are similarities 
between Gibbs free Energy and the GP dual objec-
tive functions [10]. Duffin et al. pointed out that 
the theory of GP proves properties of chemical 
systems. On the other hand, the chemical model 
suggests lines of research in mathematical pro-
gramming [11]. To bring out the significant corre-
spondence between chemical equilibrium theory 
and GP, they considered the equilibrium state of a 
homogeneous mixture of hydrogen, iodine, and 
hydriodic acid, all in gaseous state, and presented 
the associated GP.  
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Now, consider the chemical reaction for produc-
tion of ammonia as 322 23 NHNH   in gaseous
state. Gibbs free Energy function is: 

 432 ,,,, PTGG   (11) 

where 2 , 3 , and 4  are the mole numbers of
hydrogen, nitrogen, and ammonia, respectively. 
To get an explicit form for the function G, it is as-
sumed that the pressure P is sufficiently low so 
that the gas components obey the perfect gas law, 

RTPV  . Gibbs free Energy for a simple sub-
stance satisfies the relation: 

SdTVdPdG     (12) 
where S is entropy. In particular, for one mole of a 
perfect gas: 

P
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Integration of this differential equation gives: 
GPRTG  ln   (14) 

where G0 is Gibbs free Energy per mole at tem-
perature T and 1atm of pressure. Different gases 
have different values for G0 and it is important in 
experimental chemistry to evaluate these values.  
According to Dalton law for partial pressures, Pt 
can be calculated from the following equation:    



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i
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where Pt is the total pressure and Pi is the partial 
pressure of each gas. Therefore, Pi can be calcu-
lated based on the portion of concentration i as 
follows: 

t
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or, from Eq. (14), and getting the summation on 
the elements i, we have: 
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Then, substituting iP  from Eq. (16) and defining

432   result in:   

    lnln iii C
RT
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RT
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

. Let A be Avogadro number, 

then 1Ae  is the number of Hydrogen atoms and

2Ae  is the number of nitrogen atoms. The mass
balance equations are:  
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According to Gibbs variational principle, the equi-
librium values of 432 ,,   are obtained by mini-
mizing G( 432 ,,  ) subject to constraint (19).
Clearly, the values of 432 ,,   are calculated
equally by maximizing the following function 
[10]:
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in which iC
i ec  , i=2,3,4. To maximize 1 , let a

function   be defined as:
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where 11 c . Consider the dual geometric pro-
gram that requires maximizing )(  subject to 
the following (normality and orthogonality) con-
straints [10, 11]: 
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Since 11  , it follows that  = 1 , and that the
orthogonality constraints are same as the mass 
balance in Eq. (19). Thus, the equilibrium mole 
numbers can be found by solving the dual GP 
(21)-(22) [12]. Also, Gibbs free Energy function at 
equilibrium is G=-RTlnυ and corresponding pri-
mal program is [11]:   
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where G is the equilibrium free energy. If 
),,,( 4321   solves the dual program and (t1,t2) 

solves the primal program, then Eq. (24) is an 
equality. Moreover, from conditions for equality 
of the geometric mean inequality, it is known 
that: 
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where 32 , , and 4  are the equilibrium mole 
fractions and give the relative composition of the 
equilibrium mixture. 
 

4. Computational Results 
In practice, the ammonia reaction occurs at a high 
pressure (300 atm) and at high temperatures 
(450-500 oC). To solve the chemical equilibrium 
optimization problem more appropriately, the 
mixture is assumed to be ideal. Let the reaction 
conditions be at the temperature of 200oC and the 
pressure of 100 atm. Gibbs free energy of each 
component for the given enthalpy and entropy 
was extracted from [12]. The GP dual problem is: 
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It is observed that the system of equations has 3 
equations and 4 variables and, hence, its degree 
of difficulty is one. Letting r4  gives: 
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If we assume that there is one mole of nitrogen 
for each 3 moles of hydrogen at first, then: 
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Since 10  r , direct search procedure as sug-
gested in Fig. 1, 898.0r  is chosen and 
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gives: 0414.31 t  and 7002.12 t . Then, we have 

  0209.00 tg  and 8677.38699.3 
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G , the difference would be less than 0.05%.  

Finally, the mole fractions will be: 
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These results are compatible with the experi-
mental results obtained from Fig. 2. The compati-
bility of the results proposes the application of 
the GP to determine the concentrations at the 
equilibrium condition for the reactions where the 
experimental data are not available. 
 

5. Discussion 
For the reaction which has been studied in this 
paper, it is observed that the concentration of 
ammonia is very low at the pressure of 1atm. It 

Now, consider the chemical reaction for produc-
tion of ammonia as 322 23 NHNH   in gaseous
state. Gibbs free Energy function is: 

 432 ,,,, PTGG   (11) 

where 2 , 3 , and 4  are the mole numbers of
hydrogen, nitrogen, and ammonia, respectively. 
To get an explicit form for the function G, it is as-
sumed that the pressure P is sufficiently low so 
that the gas components obey the perfect gas law, 

RTPV  . Gibbs free Energy for a simple sub-
stance satisfies the relation: 

SdTVdPdG     (12) 
where S is entropy. In particular, for one mole of a 
perfect gas: 
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Integration of this differential equation gives: 
GPRTG  ln   (14) 

where G0 is Gibbs free Energy per mole at tem-
perature T and 1atm of pressure. Different gases 
have different values for G0 and it is important in 
experimental chemistry to evaluate these values.  
According to Dalton law for partial pressures, Pt 
can be calculated from the following equation:    




321
1

PPPPP
n

i
it

 (15) 

where Pt is the total pressure and Pi is the partial 
pressure of each gas. Therefore, Pi can be calcu-
lated based on the portion of concentration i as 
follows: 
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or, from Eq. (14), and getting the summation on 
the elements i, we have: 
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Then, substituting iP  from Eq. (16) and defining

432   result in:   
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then 1Ae  is the number of Hydrogen atoms and

2Ae  is the number of nitrogen atoms. The mass
balance equations are:  
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According to Gibbs variational principle, the equi-
librium values of 432 ,,   are obtained by mini-
mizing G( 432 ,,  ) subject to constraint (19).
Clearly, the values of 432 ,,   are calculated
equally by maximizing the following function 
[10]:
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in which iC
i ec  , i=2,3,4. To maximize 1 , let a

function   be defined as:
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where 11 c . Consider the dual geometric pro-
gram that requires maximizing )(  subject to 
the following (normality and orthogonality) con-
straints [10, 11]: 
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   (22) 

Since 11  , it follows that  = 1 , and that the
orthogonality constraints are same as the mass 
balance in Eq. (19). Thus, the equilibrium mole 
numbers can be found by solving the dual GP 
(21)-(22) [12]. Also, Gibbs free Energy function at 
equilibrium is G=-RTlnυ and corresponding pri-
mal program is [11]:   
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will increase as the pressure increases; in the 
pressure of 100atm and temperature of 200 oC, 
its concentration becomes 80%. This verifies the 
value calculated by the proposed method, i.e., 
81.5%. This reaction is simple but important 
enough to be considered for further research 
from this point of view. On the other hand, the 
main contribution of this work is extending a 
previous application of GP in chemistry. Previous 
works were on a simpler reaction, which was 
equi-molar (hydriodic acid), whereas the selected 
reaction for this research is different in the 
number of the molecularity of the reactant in the 
reaction. The objective of this work is to use GP as 
a tool for the optimization problem in chemistry 
and to advertise for it. The comparison has been 
done to validate the application, although the 
method theoretically finds the optimal solution; 
but, in the case of application in some chemical 
reaction concentrations, there is some kind of 
approximation sub-procedure in the related 
system of equations. Considering high cost of the 
experimental method, the accuracy of the result is 
encouraging enough to study other reactions to 
find out a suitable domain for the application of 
GP. 
 

 
Figure 1. Direct Search algorithm for finding the mole 
fractions 

 

6. Conclusion      
Geometric programming provides a systematic 
method for formulating a class of nonlinear opti-
mization problems in engineering design, which 
generally involves nonconvex functions. The 
method always produces a global minimum [12]. 
The minimum of the primal objective function is 

equal to the maximum of a corresponding dual 
problem whose constraints are linear. If the pri-
mal problem has zero degree of difficulty, the so-
lution to the dual problem is obtained by solving 
a system of linear equations. If the problem has a 
degree of difficulty greater than zero, the corre-
sponding system of linear equations has no single 
solution, but can be solved in terms of basic vari-
ables. The dual problem can then be reformulated 
in terms of the basic variables, with the linear 
constraints, that is easier to solve rather than the 
primal problem with nonlinear constraints. In-
deed, each value of the dual function provides a 
lower bound on the minimum value of the primal 
function and their optimal values are equal, 
which lead to finding the optimal values for the 
variables [15].  
 

 
Figure 2. The effects of the temperature and pressure on 
the Ammonia reaction [14] 

 

Applying GP to determine the concentration of 
the components in a chemical reaction seems to 
be more appropriate than the usual experimental 
methods in Eq. (2). Since the proposed method 
does not need the experimental data for deter-
mining the equilibrium constant K, it only re-
quires some thermodynamical data, such as the 
standard reaction’s heat and the change in the 
Gibbs Energy. The usual experimental measure-
ment methods are hard, time-consuming, and 
costly. 
It is necessary to note that GP model is based on 
Eqs. (13) and (14), which is applicable to ideal 
gases (in low pressure). To be more precise, it is 
recommended to substitute P in the equations 
with f, which is the fugacity [13], dGi=RT dlnfi. Fu-
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gacity is the attribute which is used instead of 
pressure in nonideal cases. There are different 
ways to determine the fugacity factor based on 
the other known properties of gases [14]. The 
multipliers of primal and dual functions will be 
corrected, accordingly. But, this may cause a 
higher degree of difficulty and, therefore, the 
solving procedure becomes more complex. The 
method proposed in this paper is more suitable 
for determining the concentrations in equilibrium 
for those reactions where the experimental data 
are not available, especially when the degree of 
difficulty is zero or one. On the other hand, sever-
al industrial processes involve reactive systems 
with several phases. Formulating the physical 
equilibrium conditions as additional constraints 
to the set of models (21)-(22) and further re-
search are required to extend the method for the 
modeling of simultaneous chemical and phase 
equilibrium problem. It is proposed for future 
studies to select an actual gas for the estimation 
of concentrations in chemical systems at 
equilibrium using geometric programming. 
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