[1] Bohloli, B., and Pater, C.J. (2006). “Experimental study on hydraulic fracturing of soft rocks: Influence of fluid rheology and confining stress.” Journal of Petroleum Science and Engineering, Vol. 53, pp.1-12.
[2] Jaeger, J., Cook, N., Zimmerman, R. (2007). Fundamentals of Rock Mechanics. 4th Ed., Blackwell Scientific Publications.
[3] Grebe, J. and Stoesser, M. (1935). “Increasing crude production 20,000,000 bbl.” World Petroleum J, pp. 473–82.
[4] Valkó, P., and Economides, M. (1995). Hydraulic Fracture Mechanics. Wiley.
[5] Adachi, J., Siebrits, E., Peirce, A., Desroches, J. (2007). “Computer simulation of hydraulic fractures.” International Journal of Rock Mechanics & Mining Sciences, Vol. 44, pp. 739–757.
[6] Lee, B., Soleimani, A., Dyer, S. (2009). “Optimization of Multiple Hydraulic Fractures for Open Hole Horizontal Wells by Numerical Modeling-Saudi Arabia case study.” SPE-124406-MS.
[7] Rahim, Z., AL-Kanaan, A., Johnston, B. (2011). “Success Criteria for Multistage Fracturing of Tight Gas in Saudi Arabia.” SPE-149064-MS.
[8] Alzarouni, A., and Ghedan, S. (2012). “Paving the road for the first Hydraulic Fracturing in Tight Gas Reservoirs in Offshore Abu Dhabi.” SPE-152713-MS.
[9] Alexyenko, A., Bartko, K., Adebiyi, I., Faraj, O. (2013). “Reduced Polymer Loading, High Temperature Fracturing Fluids using Nano-crosslinkers.” SPE-177469-MS.
[10] Bartko, K., Salim, A., Saldungaray, P., Kalinin, D., Han, X., Saldungaray, P. (2013). “Hydraulic Fracture Geometry Evaluation Using Proppant Detection: Experiences in Saudi Arabia.” SPE-168094-MS.
[11] Rahman, M., Suarez, Y., Chen, Z., Rahman, S. (2007). “Unsuccessful hydraulic fracturing cases in Australia: Investigation into causes of failures and their remedies.” Journal of Petroleum Science and Engineering, Vol. 57, pp. 70-81.
[12] Bunger, A., Detournay, E., Garagash, D. (2005). “Toughness-dominated hydraulic fracture with leak-off.” International Journal of Fracture, Vol. 134 (2), pp. 175-190.
[13] Kundu, P., Kumar, V., Mishra, M. (2016). “Experimental and numerical investigation of fluid flow hydrodynamics in porous media: Characterization of Darcy and non-Darcy flow regimes.” Powder Technology, Vol. 303, pp. 278-291.
[14] Fjaer, E., Holt, R., Horsrud, P., Raaen, A., Risnes, R. (2008). Petroleum Related Rock Mechanics. 2th Ed., Elsevier.
[15] Harrison, E., Kieschnick, W., McGuire, W. (1954). “The mechanics of fracture induction and extension. Petroleum Trans.” AIME, pp. 252-263.
[16] Hubbert, M., Willis, D. (1957). “Mechanics of hydraulic fracturing.” Journal of Petroleum Technology, Vol. 9(6), pp. 153-168.
[17] Crittendon, B. (1959). “The mechanics of design and interpretation of hydraulic fracture treatments.” SPE-1106-G.
[18] Perkins, T.K. and Kern, L.R. (1961). “Widths of hydraulic fractures.” SPE 89, pp. 937-949.
[19] Sneddon, I. and Elliot, H.A. (1946). “The opening of a Griffith crack under internal pressure.” Q Appl Math, Vol. 4, pp. 262–7.
[20] Nordgren, R. (1972). “Propagation of a vertical hydraulic fracture.” SPE Journal, Vol. 12(8), pp. 306-314.
[21] Khristianovic, S.A. and Zheltov, Y.P. (1955). “Formation of vertical fractures by means of highly viscous liquid.” Proc. 4th world petroleum congress, Rome, pp. 579–86.
[22] Geertsma, J. and de Klerk, F.A. (1969). “Rapid method of predicting width and extent of hydraulically induced fractures.” Journal of Petroleum Technology, Vol. 21, pp. 1571–81.
[23] Daneshy, A.A. (1973). “On the design of vertical hydraulic fractures.” SPE 3654.
[24] Spence, D.A. and Sharp, P. (1985). “Self-similar solutions for elastohydrodynamic cavity flow.” Proc R Soc London A, pp.289–313.
[25] Riahi, A., and Damjanac, B. (2013). “Numerical study of hydro-shearing in geothermal reservoirs with a pre-existing discrete fracture network.” Proceedings thirty-eighth workshop on geothermal reservoir engineering, California: Stanford University, pp. 1-13.
[26] Shimizu, H., Murata, S., Ishida, T. (2011). “The distinct element analysis for hydraulic fracturing in hard rock considering fluid viscosity and particle size distribution.” International journal of rock mechanics and mining sciences, Vol. 48, pp. 712-727
[27] Huang, S., Liu, D., Yao, Y., Gan, Q., Cai, Y., Xu, L. (2017). “Natural fractures initiation and fracture type prediction in coal reservoir under different in-situ stresses during hydraulic fracturing.” Journal of Natural Gas Science and Engineering. doi:10.1016/j.jngse.2017.03.022.
[28] Advani, S. H., Lee, T. S., Lee, J. K. (1990). “Dimensional modeling of hydraulic fractures in layered media.1. Finite-element formulations.” Journal of Energy Resources Technology-Transactions of the ASME, Vol. 112(1), pp. 1-9.
[29] Valko, P., and Economides, M.J. (1994). “Propagation of hydraulically induced fractures- a continuum damage mechanics approach.” International Journal of Rock Mechanics and Mining Sciences & Geomechanics, Vol. 31(3), pp. 221-229.
[30] Ouyang, S., Carey, G.F., Yew, C.H. (1997). “An adaptive finite element scheme for hydraulic fracturing with proppant transport.” International Journal for Numerical Methods in Fluids, Vol. 24, pp. 645-670.
[31] Papanastasiou, P. (1999). “An efficient algorithm for propagating fluid-driven fractures.” Computational Mechanics, Vol. 24, pp. 258-267.
[32] Dong, C., Pater, C. (2001). “Numerical implementation of displacement discontinuity mothed and its application in hydraulic fracturing.” computer methods in applied mechanics and engineering, Vol. 191, pp. 745-760.
[33] Zhang, X., Detournay, E., Jeffrey, R. (2002). “Propagation of a penny-shaped hydraulic fracture parallel to the free surface of an elastic half-space.” International Journal of Fracture, Vol. 115, pp. 125-158.
[34] Lecamplon, B., and Detournay, E. (2007). “An implicit algorithm for the propagation of a hydraulic fracture with a fluid lag.” Computer Methods in Applied Mechanics and Engineering, Vol. 196, pp. 4863–4880.
[35] Peirce, A., and Detournay, E. (2008). “An implicit level set method for modeling hydraulically driven fractures.” Computer Methods in Applied Mechanics and Engineering, Vol. 197, pp. 2858–2885.
[36] Chen, Z., Bunger, A., Zhang, X., Jeffrey, R. (2009). “Cohesive zone finite element based modeling of hydraulic fractures.” Acta Mechanica Solida Sinica, Vol. 22, pp. 443–452.
[37] Dean, R., and Schmidt, J. (2009). “Hydraulic fracture predictions with a fully coupled geo-mechanical reservoir simulator.” SPE Journal, Vol. 14, pp. 707-714.
[38] Carrier, B., and Granet, S. (2012). “Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model.” Engineering Fracture Mechanics, Vol. 79, pp. 312-328.
[39] Dugdale, D. (1960). “Yielding of steel sheets containing slits.” Journal of the Mechanics and Physics of Solids, Vol. 8(2), pp. 100-104.
[40] Barenblatt, G. (1962). “The mathematical theory of equilibrium of cracks in brittle fracture.” Advances in Applied Mechanics, Vol. 5, pp. 55-129.
[41] Haghi, A., Kharrat, R., Asef, M., Rezazadegan, H. (2013). “Present-day stress of the central Persian Gulf: Implications for drilling and well performance.” Tectonophysics, Vol. 608, pp. 1429-1441.
[42] Esrafili-Dizaji, B., and Rahimpour-Bonab, H. (2009). “Effects of depositional and diagenetic characteristics on carbonate reservoir quality: a case study from the South Pars gas field in the Persian Gulf.” Petroleum Geoscience, Vol. 15, pp. 325–344.
[43] Ziegler, M. (2001). “Late Permian to Holocene Paleofacies Evolution of the Arabian Plate and its Hydrocarbon Occurrences.” GeoArabia, Vol. 6, pp. 455-504.
[44] 2016. [Online]. Available: http://www.world-stress-map.org/download/.
[45] Zoback, M. (2007). Reservoir Geomechanics, Cambridge University Press, New York.
[46] Kirsch, G. (1898). Die Theorie der Elastizitat und die Bedurfnisse der Festigkeitslehre. Zeitschrift des Verlines DeutscherIngenieure.
[47] Zoback, M., Barton, C., Brudy, M., Castillo, D., Finkbeiner, T., Grollimund, B., Wiprut, D. (2003). “Determination of stress orientation and magnitude in deep wells.” International Journal of Rock Mechanics & Mining Sciences, Vol. 40, pp. 1049–1076.
[48] Tixier, M.P., Loveless, G., Anderson, R. (1975). “Estimation of Formation Strength from the Mechanical-Properties log.” SPE 4532.
[49] Sethi, D.K. (1981). “Well log application in rock mechanics.” SPE 9833.
[50] Yao, Y., Gosavi, S., Searles, H., Ellison, T. (2010). “Cohesive Fracture Mechanics Based Analysis to Model Ductile Rock Fracture.” AR-MA-10-140.
[51] Zhang, G., Liu, H., Zhang, J., Wu, H., Wang, X. (2010). “Three-dimensional finite element simulation and parametric study for horizontal well hydraulic fracture.” Journal of Petroleum Science and Engineering, Vol. 72, pp. 310–317.
[52] Benzeggagh, and Kenane. (1996). “Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus.” Composites Science and Technology, Vol. 56, pp. 439–449.