[1] Aitani, A.M. (2005). “Catalytic naphtha reforming.” Encyclopedia of Chemical Processing. S. Lee, ed., CRC Press, pp. 397–406.
[2] Ancheyta-Juarez, J. and Villafuerte-Macias, E. (2000). “Kinetic modeling of naphtha catalytic reforming reactions.” Energy Fuels, Vol. 14 (5), pp. 1032-1037.
[3] Speight, J.G. (2011). “The Refinery of the Future.” 1st Ed., William Andrew Publishing, Boston.
[4] Pregger, T., Graf, D., Krewitt, W., Sattler, C. and Moller, S. (2009). “Prospects of solar thermal hydrogen production processes.” Journal of Hydrogen Energy, Vol. 34, pp. 4256- 4267.
[5] Alves, J.J. and Towler, G.P. (2002). “Analysis of refinery hydrogen distribution systems.” Journal of Engineering Chemical Research, Vol. 41 (23), pp. 5759-5769.
[6] Liu, F. and Zhang, N. (2004). “Strategy of purifier selection and integration in hydrogen networks.” Journal of Chemical Engineering Research, Vol. 82, pp. 1315-1330.
[7] D’Ippolito, S.A., Vera, C.R., Epron, F., Especel, C., Marecot, P. and Pieck, C.L. (2008). “Naphtha reforming Pt-Re-Ge/g-Al2O3 catalysts prepared by catalytic reduction influence of the pH of the Ge addition step.” Journal of CatalysisToday, Vol. 131, pp. 13-19.
[8] Iranshahi, D., Pourazadi, E., Paymooni, K., Bahmanpour, A.M., Rahimpour, M.R. and Shariati, A. (2010). “Modeling of an axial flow, spherical packed-bed reactor for naphtha reforming process in the presence of the catalyst deactivation.” Journal of Hydrogen Energy, Vol. 35, pp. 12784-12799.
[9] Rahimpour, M.R., Iranshahi, D. and Bahmanpour, A.M. (2010). “Dynamic optimization of a multi stage spherical, radial flow reactor for the naphtha reforming process in the presence of catalyst deactivation using differential evolution (DE) method.” Journal of Hydrogen Energy, Vol. 35, pp. 7498-7511.
[10]Zahedi, G.H., Tarin, M. and Biglari, M. (2012). “Dynamic modeling and simulation of industrial naphtha reforming reactor.” Journal of World Academy of Science, Engineering and Technology, Vol. 67, pp. 911-920.
[11] Ramage, M.P., Graziani, K.R. and Krambeck, F.J. (1980). “Development of mobils kinetic reforming model.” Journal of Chemical Engineering Science, Vol. 35, pp. 41-48.
[12] Iranshahi, D., Bahmanpour, A.M., Pourazadi, E. and Rahimpour, M.R. (2010). “Mathematical modeling of a multi-stage naphtha reforming process using novel thermally coupled recuperative reactor to enhance aromatic production.” International Journal of Hydrogen Energy, Vol. 35 (20), pp. 10984-10993.
[13] Benitez, V.M. and Pieck, C.L. (2009). “Influence of indium content on the properties of Pt-Re/Al2O3 naphtha reforming catalysts.” Journal of Catalyst Letter, Vol. 107, pp. 643-650.
[14] Boutzeloit, M., Benitez, V.A., Mazzieri, V.M., Especel, C., Epron, F., Vera, C.R. and Pieck, C.L. (2006). “Effect of method of addition of Ge on the catalytic properties of Pt-Re /Al2O3 and Pt-Ir /Al2O3naphtha reforming catalysts.” Journal of Catalyst Communication, Vol. 7, pp. 627-632.
[15]Mazzieri, V.A., Pieck, C.L., Vera, C.R., Yori, J.C. and Grau, J.M. (2008). “Analysis of coke deposition and study of the variables of regeneration and rejuvenation of naphtha reforming trimetallic catalysts.” Journal of Catalyst Today, Vol. 135, pp. 870-878.
[16] Sugimoto, M., Murakawa, T., Hirano, T. and Ohashi, H. (2006). “Novel regeneration method of Pt/KL zeolite catalyst for light naphtha reforming.” Journal of Applied Catalyst, Vol. 95, pp. 257-268.
[17] Antos, G.J., Aitani, A.M. and Parera, J.M. (1995). “Catalytic naphtha reforming.” Science and technology, Vol. 99, Marcel Decker Inc., New York, pp. 409-436.
[18] Anabtawi, J.A., Redwan, D.S., Al-Jaralla, A.M. and Aitani, A.M. (1991). “Advanced in the chemistry of catalytic reforming of naphtha.” Journal of Fuel Science and Technology, Vol.91, pp. 1-23.
[19] Berger, C.V., Denny, R.F. and Michalko, E. (1978). “Chemistry of HC platforming.” American Chemical Society, Division of Petroleum Chemistry, Vol. 23, Preprints.
[20] Smith, R.B. (1959). “Kinetic analysis of naphtha reforming with platinum catalyst.” Chemical Engineering Progress, Vol. 55, pp. 76-80.
[21] Bird, R.B., Stewart, W.E. and Lightfoot, E.N. (1960). Transport Phenomena. John Wiley and Sons Inc., New York.
[22] Taskar, U. and Riggs, J.B. (1997). “Modeling and optimization of a semiregenerative catalytic naphtha reformer.” AICHE Journal, Vol. 43, pp. 740-753.
[23] Arani, H.M., Shokri, S. and Shirvani, M. (2010). “Dynamic modeling and simulation of catalytic naphtha reforming.” International journal of Chemical Engineering and Applications, Vol. 1 (2), pp.159-164.
[24] Meyers, R.A. (1996). Hand Book of Petroleum Refining Processes. 2nd Ed., McGraw Hill.
[25] Bommannan, D., Srivastava, R.D., Saraf, D.N. (1989). “Modelling of catalytic naphtha reformers.” Canadian Journal of Chemical Engineering, Vol. 67 (3), pp. 405-411.
[26] Matar, S., Hatch, L.F. (2000). Chemistry of Petrochemical Processes, 2th Ed., Gulf Publishing Company.
[27] Jess, A., Hein, O. and Kern, C. (1999). “Deactivation and decoking of a naphtha reforming catalyst.” Studies in Surface Science and Catalysis Journal,Vol. 126, pp. 81-88.