[1] Putra, M.D., Al-Zahrani, S.M. and Abasaeed, A.E. (2011). "Oxidative dehydrogenation of propane to propylene over Al2O3-supported Sr–V–Mo catalysts." Catalysis Communications, Vol. 14, pp. 107-110.
[2] Sun, X., Ding, Y., Zhang, B., Huang, R. and Su, D.S. (2015). "New insights into the oxidative dehydrogenation of propane on borate-modified nanodiamond." Chemical Communications, Vol. 51, pp. 9145-8.
[3] Putra, M.D., Al-Zahrani, S.M. and Abasaeed, A.E. (2012). "Oxidehydrogenation of propane to propylene over Sr–V–Mo catalysts: Effects of reaction temperature and space time." Journal of Industrial and Engineering Chemistry, Vol. 18, pp. 1153-1156.
[4] Siahvashi, A., Chesterfield, D. and Adesina, A.A. (2013). "Nonoxidative and Oxidative Propane Dehydrogenation over Bimetallic Mo–Ni/Al2O3 Catalyst." Industrial & Engineering Chemistry Research, Vol. 52, pp. 4017-4026.
[5] Ma, F., Chen, S., Zhou, H., Li, Y. and Lu, W. (2014). "Revealing the ameliorating effect of chromium oxide on a carbon nanotube catalyst in propane oxidative dehydrogenation." RSC Advance, Vol. 4, pp. 40776-40781.
[6] Chen, S., Ma, F., Xu, A., Wang, L., Chen, F. and Lu, W. (2014). "Study on the structure, acidic properties of V–Zr nanocrystal catalysts in oxidative dehydrogenation of propane." Applied Surface Science, Vol. 289, pp. 316-325.
[7] Löfberg, A., Giornelli, T., Paul S. and Bordes-Richard, E. (2011). "Catalytic coatings for structured supports and reactors: VOx/TiO2 catalyst coated on stainless steel in the oxidative dehydrogenation of propane." Applied Catalysis A: General, Vol. 391, pp. 43-51.
[8] Fattahi, M., Kazemeini, M., Khorasheh, F. and Rashidi, A.M. (2013). "Vanadium pentoxide catalyst over carbon-based nanomaterials for the oxidative dehydrogenation of propane." Industrial & Engineering Chemistry Research, Vol. 52, pp. 16128-16141.
[9] Rozanska, X., Fortrie, R. and Sauer, J. (2014). "Size-dependent catalytic activity of supported vanadium oxide species: oxidative dehydrogenation of propane." Journal of the American Chemical Society, Vol. 136, pp. 7751-7761.
[10] Banares, M. and Khatib, S. (2004). "Structure-activity relationships in alumina-supported molybdena-vanadia catalysts for propane oxidative dehydrogenation." Catalysis Today, Vol. 96, pp. 251-257.
[11] Zhang, J., Wang, Y., Jin, Z., Wu, Z. and Zhang, Z. (2008). "Visible-light photocatalytic behavior of two different N-doped TiO2." Applied Surface Science, Vol. 254, pp. 4462-4466.
[12] Oliva, C., Cappelli, S., Rossetti, I., Ballarini, N., Cavani, F. and Forni, L. (2009). "EPR enlightening some aspects of propane ODH over VOx–SiO2 and VOx–Al2O3." Chemical Engineering Journa l,Vol. 154, pp. 131-136.
[13] Chakraborty, S., Nayak, S.C. and Deo, G. (2015). "TiO2/SiO2 supported vanadia catalysts for the ODH of propane." Catalysis Today, Vol. 254, pp. 62-71.
[14] Wang, C., Chen, J. G., Xing, T., Liu, Z. T., Liu, Z.W. and Jiang, J. (2015). "Vanadium Oxide Supported on Titanosilicates for the Oxidative Dehydrogenation of n-Butane." Industrial & Engineering Chemistry Research,Vol. 54, pp. 3602-3610.
[15] Reddy, B.M., Lakshmanan, P., Loridant, S., Yamada, Y., Kobayashi, T. and López-Cartes, C. (2006). "Structural Characterization and Oxidative Dehydrogenation Activity of V2O5/Ce x Zr1-x O2/SiO2 Catalysts." The Journal of Physical Chemistry B, Vol. 110, pp. 9140-9147.
[16] Cortés Corberán., V. (2009). "Nanostructured Oxide Catalysts for Oxidative Activation of Alkanes." Topics in Catalysis, Vol. 52, pp. 962-969.
[17] Shee, D. and Deo, G. (2009). "Adsorption and ODH reaction of alkane on sol–gel synthesized TiO2–WO3 supported vanadium oxide catalysts: In situ DRIFT and structure–reactivity study." Journal of Molecular Catalysis A: Chemical, Vol. 308, pp. 46-55.
[18] Lei, Y., Mehmood, F., Lee, S., Greeley, J., Lee, B. and Seifert S.(2010). "Increased silver activity for direct propylene epoxidation via subnanometer size effects." Science,Vol. 328, pp. 224-8.
[19] Kraemer, S., Rondinone, A.J., Tsai, Y.T., Schwartz, V.S., Overbury, H. and Idrobo, J.C. (2016). "Oxidative dehydrogenation of isobutane over vanadia catalysts supported by titania nanoshapes." Catalysis Today, Vol. 263, pp. 84-90.
[20] Rischard, J., Antinori, C., Maier, L. and Deutschmann, O. (2016). "Oxidative dehydrogenation of n-butane to butadiene with Mo-V-MgO catalysts in a two-zone fluidized bed reactor." Applied Catalysis A: General, Vol. 511, pp. 23-30.
[21] Reddy, B.M., Rao, K.N., Reddy, G.K. and Bharali, P. (2006). "Characterization and catalytic activity of V2O5/Al2O3-TiO2 for selective oxidation of 4-methylanisole." Journal of Molecular Catalysis A: Chemical,Vol. 253, pp. 44-51.
[22] De León, M.A., De Los Santos, C., Latrónica, L.A., Cesio, M., Volzone, C. and Castiglioni , J. (2014). "High catalytic activity at low temperature in oxidative dehydrogenation of propane with Cr–Al pillared clay." Chemical Engineering Journal, Vol. 241, pp. 336-343.
[23] Wang, W., Zhang, J., Huang, H., Wu, Z. and Zhang, Z. (2008). "Surface-modification and characterization of H-titanate nanotube." Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 317, pp. 270-276.
[24] Fen, L.B., Han, T.K., Nee, N.M., Ang, B.C. and Johan, M.R. (2011). "Physico-chemical properties of titania nanotubes synthesized via hydrothermal and annealing treatment." Applied Surface Science, Vol. 258, pp. 431-435.
[25] Ou, H. and Lo, S. (2007). "Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application." Separation and Purification Technology, Vol. 58, pp. 179-191.
[26] Liu, J., Fu, Y., Sun, Q. and Shen, J. (2008). "TiO2 nanotubes supported V2O5 for the selective oxidation of methanol to dimethoxymethane." Microporous and Mesoporous Material s,Vol. 116, pp. 614-621.
[27] Kootenaei, A.H.S., Towfighi, J., Khodadadi, J.A. and Mortazavi, Y. (2014). "Stability and catalytic performance of vanadia supported on nanostructured titania catalyst in oxidative dehydrogenation of propane." Applied Surface Science, Vol. 298, pp. 26-35.
[28] Concepción, P., Nieto, J.L. and Pérez-Pariente. J. (1994). "Oxidative dehydrogenation of ethane on a magnesium-vanadium aluminophosphate (MgVAPO-5) catalyst." Catalysis letters, Vol. 28, pp. 9-15.
[29] Kim, S.J., Yun, Y.U., Oh, H.J., Hong, S.H., Roberts, C.A. and Routray, K. (2009). "Characterization of hydrothermally prepared titanate nanotube powders by ambient and in situ Raman spectroscopy." The Journal of Physical Chemistry Letters, Vol. 1, pp. 130-135.
[30] Shi, L., Cao, L., Liu, W., Su, G., Gao, R. and Zhao, Y. (2014). "A study on partially protonated titanate nanotubes: Enhanced thermal stability and improved photocatalytic activity." Ceramics International, Vol. 40, pp. 4717-4723.
[31] Gannoun, C., Turki, A., Kochkar, H., Delaigle, R., Eloy, P. and Ghorbel, A. (2014). "Elaboration and characterization of sulfated and unsulfated V2O5/TiO2 nanotubes catalysts for chlorobenzene total oxidation." Applied Catalysis B: Environmental,Vol. 147, pp. 58-64.
[32] Cortés-Jácome, M.A., Ferrat-Torres, G.L., Ortiz, F.F., Angeles-Chávez, C., López-Salinas, E. and Escobar J. (2007). "In situ thermo-Raman study of titanium oxide nanotubes." Catalysis Today,Vol. 126, pp. 248-255.
[33] Ma, R., Fukuda, K., Sasaki, T., Osada, M. and Bando, Y. (2005). "Structural features of titanate nanotubes/nanobelts revealed by Raman, X-ray absorption fine structure and electron diffraction characterizations." The Journal of Physical Chemistry B, Vol. 109, pp. 6210-6214.
[34] Qian, L., Du, Z.L., Yang, S.Y. and Jin, Z.S. (2005). "Raman study of titania nanotube by soft chemical process." Journal of Molecular Structure, Vol. 749, pp. 103-107.
[35] Stencel, J.M. (1989). Raman spectroscopy for catalysis, Springer.
[36] Wang, G., Wu, W., Zhu, X., Sun, Y., Li, C. and Shan, H. (2014). "Effect of calcination temperature on isobutane dehydrogenation over Mo/MgAl2O4 catalysts." Catalysis Communications, Vol. 56, pp. 119-122.