[1] Yallapu, M.M., Jaggi, M. and Chauhan, S. C. (2012). “Curcumin nanoformulations: a future nanomedicine for cancer.” Drug Discovery Today, Vol. 17, No. 1-2, pp. 71-80.
[2] Misra, R., Acharya, S. and Sahoo, S. K. (2010). “Cancer nanotechnology: application of nanotechnology in cancer therapy.” Drug Discovery Today, Vol. 15, No. 19-20, pp. 842-850.
[3] Maheshwari, R. K., Singh, A.K., Gaddipati, J. and Srimal, R. C. (2006). “Multiple biological activities of curcumin:” a short review. Life Sciences, Vol. 78, No. 18, pp. 2081-2087.
[4] Vogel, H. A. and Pelletier, J. (1815). “Curcumin-biological and medicinal properties.” J. Pharma, Vol. 2, No. 50, p. 24.
[5] Menon, V. P. and Sudheer, A. R. (2007). Antioxidant and anti-inflammatory properties of curcumin, “The molecular targets and therapeutic uses of curcumin in health and disease.” Vol. 595, pp. 105-125. Springer. Boston.
[6] Goel, A., Kunnumakkara, A. B. and Aggarwal, B.B. (2008). “Curcumin as “Curcumin”: from kitchen to clinic.” Biochemical Pharmacology, Vol. 75, No. 4, pp. 787-809.
[7] Masuda, T., Maekawa, T., Hidaka, K., Bando, H. Takeda, Y., and Yamaguchi, H. (2001). “Chemical studies on antioxidant mechanism of curcumin: analysis of oxidative coupling products from curcumin and linoleate.” Journal of Agricultural and Food Chemistry, Vol. 49, No. 5, pp. 2539-2547.
[8] Miquel, J., Bernd, A., Sempere, J. M., Dıaz-Alperi, J. And Ramırez, A. (2002). “The curcuma antioxidants: pharmacological effects and prospects for future clinical use. A review.” Archives of Gerontology and Geriatrics, Vol. 34, No. 1, pp. 37-46.
[9] Kikuchi, H., Kuribayashi, F., Kiwaki, N. and Na-kayama, T. (2010). “Curcumin dramatically enhances retinoic acid-induced superoxide generating activity via accumulation of p47-phox and p67-phox proteins in U937 cells.” Biochemical and Biophysical Research Communications, Vol. 395, No. 1, pp. 61-65.
[10] Srimal, R. C. and Dhawan, B. N. (1973). “Pharmacology of diferuloyl methane (curcumin), a non‐steroidal anti‐inflammatory agent.” Journal of Pharmacy and Pharmacology, Vol. 25, No. 6, pp. 447-452.
[11] Agarwal, B. B. and Harikumar, K. B. (2009). “Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases.” The International Journal of Biochemistry & Cell Biology, Vol. 41, No. 1, pp. 40-59.
[12] Weber, W. M., Hunsaker, L. A., Abcouwer, S.F., Deck, L.M. and Vander Jagt, D. L. (2005). “Anti-oxidant activities of curcumin and related enones.” Bioorganic & Medicinal Chemistry, Vol. 13, No. 11, pp. 3811-3820.
[13] Dikshit, M., Rastogi, L., Shukla, R. and Srimal, R.C. (1995). “Prevention of ischaemia-induced biochemical changes by curcumin & quinidine in the cat heart.” The Indian Journal of Medical Research, Vol. 101, pp. 31-35.
[14] Nirmala, C. and Puvanakrishnan, R. (1996). “Protective role of curcumin against isoproterenol induced myocardial infarction in rats.” Molecular and Cellular Biochemistry, Vol. 159, No. 2, pp. 85-93.
[15] Venkatesan, N. (1998). “Curcumin attenuation of acute adriamycin myocardial toxicity in rats.” British Journal of Pharmacology, Vo. 124, No. 3, pp. 425-427.
[16] Rao, C. V., Rivenson, A., Simi, B. and Reddy, B. S. (1995). “Chemoprevention of colon carcinogenesis by dietary curcumin, a naturally occurring plant phenolic compound.” Cancer Research, Vol. 55, No. 2, pp. 259-266.
[17] Kuttan, R., Sudheeran, P. C., and Josph, C. D. (1987). “Turmeric and curcumin as topical agents in cancer therapy.” Tumori Journal, Vol. 73, No. 1, pp. 29-31.
[18] Shishodia, S., Chaturvedi, M.M. and Aggarwal, B. B. (2007). “Role of curcumin in cancer therapy.” Current Problems in Cancer, Vol. 31, No. 4, pp. 243-305.
[19] Tomren, M.A., Masson, M., Loftsson, T. and Tønnesen, H. H. (2007). “Studies on curcumin and curcuminoids: XXXI. Symmetric and asymmetric curcuminoids: stability, activity and complexation with cyclodextrin.” International Journal of Pharmaceutics, Vol. 338, No. 1-2, 27-34.
[20] Kurien, B. T., Singh, A., Matsumoto, H. and Scofield, R. H. (2007). “Improving the solubility and pharmacological efficacy of curcumin by heat treatment.” Assay and Drug Development Technologies, Vol. 5, No. 4, pp. 567-576.
[21] Nagavarma, B. V. N., Yadav, H. K., Ayaz, A., Vasudha, L. S., and Shivakumar, H. G. (2012). “Different techniques for preparation of polymeric nanoparticles-a review.” Asian Journal of Pharmaceutical and Clinical Research, 5(3), 16-23.
[22] Zambaux, M. F., Bonneaux, F., Gref, R., Main-cent, P., Dellacherie, E., Alonso, M. J. and Vigneron, C. (1998). “Influence of experimental parameters on the characteristics of poly (lactic acid) nanoparticles prepared by a double emulsion method.” Journal of Controlled Release, Vol. 50, No. 1-3, pp. 31-40.
[23] Jain, R. A. (2000). “The manufacturing techniques of various drug loaded biodegradable poly (lactide-co-glycolide) (PLGA) devices.” Biomaterials, Vol. 21, No. 23, pp. 2475-2490.
[24] McCarron, P.A., Donnelly, R.F. and Marouf, W. (2006). “Celecoxib-loaded poly (D, L-lactide-co-glycolide) nanoparticles prepared using a novel and controllable combination of diffusion and emulsification steps as part of the salting-out procedure.” Journal of Microencapsulation, Vol. 23, No. 5, pp. 480-498.
[25] Soppimath, K. S., Aminabhavi, T. M., Kulkarni, A. R. and Rudzinski, W. E. (2001). “Biodegradable polymeric nanoparticles as drug delivery devices.” Journal of Controlled Release, Vol. 70, No. 1-2, pp. 1-20.
[26] Scholes, P. D., Coombes, A. G. A., Illum, L., Daviz, S. S., Vert, M. and Davies, M.C. (1993). “The preparation of sub-200 nm poly (lactide-co-glycolide) microspheres for site-specific drug delivery.” Journal of Controlled Release, Vol. 25, No. 1-2, pp. 145-153.
[27] Rietveld, I. B., Kobayashi, K., Yamada, H. and Matsushige, K. (2006). “Electrospray deposition, model, and experiment: Toward general control of film morphology.” The Journal of Physical Chemistry B, Vol. 110, No. 46, pp. 23351-23364.
[28] Bagheri-Tar, F., Sahimi, M. and Tsotsis, T. T. (2007). “Preparation of polyetherimide nanoparticles by an electrospray technique.” Industrial & Engineering Chemistry Research, Vol. 46, No. 10, pp. 3348-3357.
[29] Jaworek, A. (2007). “Micro-and nanoparticle production by electrospraying.” Powder Technology, Vol. 176, No. 1, pp. 18-35.
[30] Jaworek, A. T. S. A., and Sobczyk, A. T. (2008). “Electrospraying route to nanotechnology: An overview.” Journal of Electrostatics, Vol. 66, No. 3-4, pp. 197-219.
[31] Chakraborty, S., Liao, I. C., Adler, A. and Leong, K.W. (2009). “Electrohydrodynamics: a facile technique to fabricate drug delivery systems.” Advanced Drug Delivery Reviews, Vol. 61, No. 12, pp. 1043-1054.
[32] Jaworek, A. and Krupa, A. (1999). “Classification of the modes of EHD spraying.” Journal of Aerosol Science, Vol. 30, No. 7, pp. 873-893.
[33] Zhang, S. and Kawakami, K. (2010). “One-step preparation of chitosan solid nanoparticles by electrospray deposition.” International Journal of Pharmaceutics, Vol. 397, No. 1-2, pp. 211-217.
[34] Hogan Jr, C. J., Yun, K. M., Chen, D. R., Lenggo-ro, I. W., Biswas, P. and Okuyama, K. (2007). “Controlled size polymer particle production via electrohydrodynamic atomization.” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 311, No. 1-3, pp. 67-76.
[35] Ijsebaert, J. C., Geerse, K. B., Marijnissen, J. C., Lammers, J. W. J., and Zanen, P. (2001). “Electro-hydrodynamic atomization of drug solutions for inhalation purposes.” Journal of Applied Physiology, Vol. 91, No. 6, pp. 2735-2741.
[36] Zarchi, A. A. K., Abbasi, S., Faramarzi, M. A., Gilani, K., Ghazi-Khansari, M. and Amani, A. (2015). “Development and optimization of N-Acetylcysteine-loaded poly (lactic-co-glycolic acid) nanoparticles by electrospray.” International Journal of Biological Macromolecules, Vol. 72, pp. 764-770.
[37] Liu, J., Xu, L., Liu, C., Zhang, D., Wang, S., Deng, Z. and Ma, J. (2012). “Preparation and characterization of cationic curcumin nanoparticles for improvement of cellular uptake.” Carbohydrate Polymers, Vol. 90, No. 1, pp. 16-22.
[38] Steyaert, I., Van der Schueren, L., Rahier, H. and De Clerck, K. (2012). “An alternative solvent system for blend electrospinning of polycaprolactone/chitosan nanofibres.” Macromolecular Symposia. Vol. 321, No. 1, pp. 71-75.
[39] Van der Schueren, L., Steyaert, I., De Schoenmaker, B. and De Clerck, K. (2012). “Poly-caprolactone/chitosan blend nanofibres electro-spun from an acetic acid/formic acid solvent system.” Carbohydrate Polymers, Vol. 88, No. 4, pp. 1221-1226.
[40] Chawla, J. S. and Amiji, M. M. (2002). “Biodegradable poly (ε-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen.” International Journal of Pharmaceutics, Vol. 249, No. 1, pp. 127-138.
[41] Ilium, L. (1998). “Chitosan and its use as a pharmaceutical excipient.” Pharmaceutical Research, Vol. 15, No. 9, pp. 1326-1331.
[42] Rinaudo, M. (2006). “Chitin and chitosan: properties and applications. Progress in Polymer Science.” Vol. 31, No. 7, pp. 603-632.
[43] Wu, L., Li, H., Li, S., Li, X., Yuan, X., Li, X. and Zhang, Y. (2010). “Composite fibrous membranes of PLGA and chitosan prepared by coelectrospinning and coaxial electrospinning.” Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Bio-materials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, Vol. 92, No. 2, pp. 563-574.
[44] Hartman, R. P. A., Brunner, D. J., Camelot, D. M. A., Marijnissen, J. C. M., and Scarlett, B. (2000). “Jet break-up in electrohydrodynamic atomization in the cone-jet mode.” Journal of Aerosol Science, Vol. 31, No. 1, pp. 65-95.
[45] Ganan-Calvo, A. M., Davila, J., and Barrero, A. (1997). “Current and droplet size in the electrospraying of liquids. Scaling laws.” Journal of Aerosol Science, Vol. 28, No. 2, pp. 249-275.
[46] Enayati, M., Ahmad, Z., Stride, E., and Edirisinghe, M. (2010). “Size mapping of electric field-assisted production of polycaprolactone particles.” Journal of The Royal Society Interface, Vol. 7 No. Suppl 4, pp. S393-S402.
[47] Lee, Y. H., Mei, F., Bai, M. Y., Zhao, S., and Chen, D. R. (2010). “Release profile characteristics of biodegradable-polymer-coated drug particles fabricated by dual-capillary electrospray.” Journal of Controlled Release, Vol. 145, No. 1, pp. 58-65.
[48] Mohan, P. K., Sreelakshmi, G., Mura-leedharan, C. V. and Joseph, R. (2012). “Water soluble complexes of curcumin with cyclodextrins: Characterization by FT-Raman spectroscopy.” Vibrational Spectroscopy, Vol. 62, pp. 77-84.
[49] Elzein, T., Nasser-Eddine, M., Delaite, C., Bi-stac, S. and Dumas, P. (2004). “FTIR study of poly-caprolactone chain organization at interfaces.” Journal of Colloid and Interface Science, Vol. 273, No. 2, pp. 381-387.
[50] Jayasree, A., Sasidharan, S., Koyakutty, M., Nair, S., and Menon, D. (2011). “Mannosylated chitosan-zinc sulphide nanocrystals as fluorescent bioprobes for targeted cancer imaging.” Carbohydrate Polymers, Vol. 85, No. 1, pp. 37-43.