[1] Doucet, J., Laviolette, J. P., Farag, S. and Chaouki, J. (2014). “Distributed microwave pyrolysis of domestic waste.” Waste and Biomass Valorization, Vol. 5, No. 1, pp. 1-10.
[2] Farag, S., Sobhy, A., Akyel, C., Doucet, J. and Chaouki, J. (2012). “Temperature profile prediction within selected materials heated by microwaves at 2.45 GHz.” Applied Thermal Engineering, Vol. 36, pp. 360-369.
[3] Sobhy, A. and Chaouki, J. (2010). “Microwave-assisted biorefinery.” Chemical Engineering Transactions. Vol. 19, pp. 25-30.
[4] Farag, S. and Chaouki, J. (2015). “A modified microwave thermo-gravimetric-analyzer for kinetic purposes.” Applied Thermal Engineering, Vol. 75, pp. 65-72.
[5] Farag, S., Fu, D., Jessop, P. G. and Chaouki, J. (2014). “Detailed compositional analysis and structural investigation of a bio-oil from microwave pyrolysis of kraft lignin.” Journal of Analytical and Applied Pyrolysis, Vol. 109, pp. 249-257.
[6] Farag, S., Kouisni, L. and Chaouki, J. (2014). “Lumped approach in kinetic modeling of microwave pyrolysis of kraft lignin.” Energy & Fuels, Vol. 28, No. 2, pp. 1406-1417.
[7] Hamzehlouia, S., Jaffer, S. A. and Chaouki, J. (2018). “Microwave Heating-Assisted Catalytic Dry Reforming of Methane to Syngas. Scientific reports.” Vol. 8, No. 1, pp. 8940-8947.
[8] Hamzehlouia, S., Shabanian, J. and Latifi, M. and Chaouki, J. (2018). “Effect of microwave heating on the performance of catalytic oxidation of n-butane in a gas-solid fluidized bed reactor.” Chemical Engineering Science, Vol. 192, pp. 1177-1188.
[9] Katz, J. D. (1992). “Microwave sintering of ceramics. Annual Review of Materials Science.” Vol. 22, No. 1, pp. 153-170.
[10] Roy, R., Agrawal, D., Cheng, J. and Gedevanishvili, S. (1999). “Full sintering of pow-dered-metal bodies in a microwave field.” Nature, Vol. 399, No. 6737, pp. 668.
[11] Levenspiel, O. (1999). “Chemical reaction engineering.” Industrial & Engineering Chemistry Research, Vol. 38, No, 11, pp. 4140-4143.
[12] Wang, J., Binner, J., Vaidhyanathan, B., Joomun, N., Kilner, J., Dimitrakis, G. and Cross, T. E. (2006). “Evidence for the microwave effect during hybrid sintering.” Journal of the American Ceramic Society, Vol. 89, No. 6, pp. 1977-1984.
[13] Clark, D. E., Folz, D. C. and West, J. K. (2000). “Processing materials with microwave energy.” Materials Science and Engineering: A. Vol. 287, No. 2, pp. 153-158.
[14] Janney, M. A., Kimrey, H. D. and Kiggans, J. O. (1992). “Microwave processing of ceramics: Guidelines used at the Oak Ridge National Laboratory.” MRS Online Proceedings Library Archive, Vol. 269.
[15] Janney, M. A., Kimery, H. D., Allen, W. R. and Kiggans, J. O. (1997). “Enhanced diffusion in sapphire during microwave heating.” Journal of Materials Science, Vol. 32, No. 5, pp. 1347-1355.
[16] Pert, E., Carmel, Y., Birnboim, A., Olorun-yolemi, T., Gershon, D., Calame, J., Lloyd, I. K. and Wilson, O. C. (2001). “Temperature measurements during microwave processing: the significance of thermocouple effects.” Journal of the American Ceramic Society, Vol. 84, No. 9, pp. 1981-1986.
[17] Dunscombe, P. B., McLellan, J., and Malaker, K. (1986). “Heat production in microwave‐irradiated thermocouples.” Medical Physics, Vol. 13, No. 4, pp. 457-461.
[18] Olmstead, W. E., and Brodwin, M. E. (1997). “A model for thermocouple sensitivity during microwave heating.”International Journal of Heat and Mass Transfer, Vol. 40, No. 7, pp. 1559-1565.
[19] Jackson, J. D. (2012). Classical electrodynamics. John Wiley & Sons.
[20] Ramo, S., Whinnery, J. R., and Van Duzer, T. (2008). Fields and waves in communication electronics. John Wiley & Sons.
[21] Meek, T. T., Park, S. S., Nehls, M. A. and Kim, C. W. (1989). “Temperature Measurement for Microwave Processing of Advanced Ceramics.” MRS Online Proceedings Library Archive, Vol. 155. pp. 267-274.
[22] Kappe, C. O. (2013). “How to measure reaction temperature in microwave-heated transformations.” Chemical Society Reviews, Vol. 42, No. 12, pp. 4977-4990.
[23] Cuccurullo, G., Berardi, P. G., Carfagna, R. and Pierro, V. (2002). “IR temperature measurements in microwave heating.” Infrared Physics & Technology, Vol. 43, No. 3-5, pp. 145-150.
[24] Matthew Gerbo, N., Boldor, D. and Mirela Sa-bliov, C. (2007). “Design of a measurement system for temperature distribution in continuous-flow microwave heating of pumpable fluids using infrared imaging and fiber optic technology.” Journal of Microwave Power and Electromagnetic Energy, Vol. 42, No. 1, pp. 55-65.
[25] Svet, D. (1979). “The problems of radiation pyrometry and some new possibilities of their solution.” Acta IMEKO, Vol. 1979, pp. 55-61.
[26] Nouaoura, M., Lassabatere, L., Bertru, N., Bonnet, J. and Ismail, A. (1995). “Problems relevant to the use of optical pyrometers for substrate temperature measurements and controls in molecular beam epitaxy.” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, Vol. 13, No. 1, pp. 83-87.
[27] Schieferdecker, J., Quad, R., Holzenkämpfer, E. and Schulze, M. (1995). “Infrared thermopile sensors with high sensitivity and very low temperature coefficient.” Sensors and Actuators A: Physical, Vol. 47, No. 1-3, pp. 422-427.
[28] Dehe, A., Fricke, K. and Hartnagel, H. L. (1995). “Infrared thermopile sensor based on AlGaAs—GasAs micromachining.” Sensors and Actuators A: Physical, Vol. 47, No. 1-3, pp. 432-436.
[29] Graf, A., Arndt, M., Sauer, M. and Gerlach, G. (2007). “Review of micromachined thermopiles for infrared detection.” Measurement Science and Technology, Vol. 18, No. 7, pp. 59-75.
[30] Hamzehlouia, S. (2017). Development of Microwave Heating-Assisted Catalytic Reaction Process: Application for Dry Reforming of Methane Optimization (Doctoral dissertation, École Poly-technique de Montréal). Montreal, Canada.
[31] Ma, J., Fang, M., Li, P., Zhu, B., Lu, X. and Lau, N. T. (1997). “Microwave-assisted catalytic combustion of diesel soot.” Applied Catalysis A: General, Vol. 159, No. 1-2, pp. 211-228.
[32] Vos, B., Mosman, J., Zhang, Y., Poels, E. and Bliek, A. (2003). “Impregnated carbon as a susceptor material for low loss oxides in dielectric heating.” Journal of Materials Science, Vol. 38 No. 1, pp. 173-182.
[33] Uhlig, H. H. and Keyes, F. G. (1933). “The dependence of the dielectric constants of gases on temperature and density.” The Journal of Chemical Physics, Vol. 1, No. 2, pp. 155-159.
[34] Wong, W. L. E. and Gupta, M. (2007). “Development of Mg/Cu nanocomposites using microwave assisted rapid sintering.” Composites Science and Technology, Vol. 67, No. 7-8, pp. 1541-1552.
[35] Leclerc, P., Doucet, J., and Chaouki, J. (2018). “Development of a microwave thermogravimetric analyzer and its application on polystyrene microwave pyrolysis kinetics.” Journal of Analytical and Applied Pyrolysis, Vol. 130, 209-215.
[36] Kim, S. W., Ahn, J. Y., Kim, S. D. and Lee, D. H. (2003). “Heat transfer and bubble characteristics in a fluidized bed with immersed horizontal tube bundle.” International Journal of Heat and Mass Transfer, Vol. 46, No. 3, pp. 399-409.