[1] He HY, Chen P. Recent advances in property enhancement of nano TiO2 in photodegradation of organic pollutants. Chemical Engineering Communications. 2012 Dec 1;199(12):1543-74.
[2] Vaez M, Moghaddam AZ, Mahmoodi NM, Alijani S. Decolorization and degradation of acid dye with immobilized titania nanoparticles. Process Safety and Environmental Protection. 2012 Jan 1;90(1):56-64.
[3] Chong MN, Jin B, Chow CW, Saint C. Recent developments in photocatalytic water treatment technology: a review. Water Research. 2010 May;44(10):2997-3027.
[4] Shan AY, Ghazi TI, Rashid SA. Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: a review. Applied Catalysis A: General. 2010 Dec 1;389(1-2):1-8.
[5] Eydivand S, Nikazar M. Degradation of 1, 2-Dichloroethane in simulated wastewater solution: A comprehensive study by photocatalysis using TiO2 and ZnO nanoparticles. Chemical Engineering Communications. 2015 Jan 2;202(1):102-11.
[6] Damodar RA, Swaminathan T. Performance evaluation of a continuous flow immobilized rotating tube photocatalytic reactor (IRTPR) immobilized with TiO2 catalyst for azo dye degradation. Chemical Engineering Journal. 2008 Oct 1;144(1):59-66.
[7] Damodar RA, Jagannathan K, Swaminathan T. Decolourization of reactive dyes by thin film immobilized surface photoreactor using solar irradiation. Solar Energy. 2007 Jan 1;81(1):1-7.
[8] Chan AH, Chan CK, Barford JP, Porter JF. Solar photocatalytic thin film cascade reactor for treatment of benzoic acid containing wastewater. Water Research. 2003 Mar 1;37(5):1125-35.
[9] Lee JH, Nam W, Kang M, Han GY, Yoon KJ, Kim MS, Ogino K, Miyata S, Choung SJ. Design of two types of fluidized photo reactors and their photo-catalytic performances for degradation of methyl orange. Applied Catalysis A: General. 2003 May 8;244(1):49-57.
[10] Rizzo L, Koch J, Belgiorno V, Anderson MA. Removal of methylene blue in a photocatalytic reactor using polymethylmethacrylate supported TiO2 nanofilm. Desalination. 2007 Jun 10;211(1-3):1-9.
[11] Guillard C, Disdier J, Monnet C, Dussaud J, Malato S, Blanco J, Maldonado MI, Herrmann JM. Solar efficiency of a new deposited titania photocatalyst: chlorophenol, pesticide and dye removal applications. Applied Catalysis B: Environmental. 2003 Nov 10;46(2):319-32.
[12] Alijani S, Moghaddam AZ, Vaez M, Towfighi J. Characterization of TiO 2-coated ceramic foam prepared by modified sol-gel method and optimization of synthesis parameters in photodegradation of Acid Red 73. Korean Journal of Chemical Engineering. 2013 Oct 1;30(10):1855-66.
[13] Alijani S, Moghaddam AZ, Vaez M, Towfighi J. Synthesis of N–TiO 2–P25 coated on ceramic foam by modified sol–gel method for Acid Red 73 degradation under visible-light irradiation. Research on Chemical Intermediates. 2015 Jul 1;41(7):4489-509.
[14] Collazzo GC, Foletto EL, Jahn SL, Villetti MA. Degradation of Direct Black 38 dye under visible light and sunlight irradiation by N-doped anatase TiO2 as photocatalyst. Journal of Environmental Management. 2012 May 15;98:107-11.
[15] Ochuma IJ, Osibo OO, Fishwick RP, Pollington S, Wagland A, Wood J, Winterbottom JM. Three-phase photocatalysis using suspended titania and titania supported on a reticulated foam monolith for water purification. Catalysis Today. 2007 Oct 15;128(1-2):100-7.
[16] Soleymani AR, Saien J, Chin S, Le HA, Park E, Jurng J. Modeling and optimization of a sono-assisted photocatalytic water treatment process via central composite design methodology. Process Safety and Environmental Protection. 2015 Mar 1;94:307-14.
[17] Natarajan K, Natarajan TS, Bajaj HC, Tayade RJ. Photocatalytic reactor based on UV-LED/TiO2 coated quartz tube for degradation of dyes. Chemical Engineering Journal. 2011 Dec 15;178:40-9.
[18] Mozia S, Tomaszewska M, Morawski AW. Decomposition of nonionic surfactant in a labyrinth flow photoreactor with immobilized TiO2 bed. Applied Catalysis B: Environmental. 2005 Aug 8;59(3-4):155-60.
[19] Vaez M, Zarringhalam Moghaddam A, Alijani S. Optimization and modeling of photocatalytic degradation of azo dye using a response surface methodology (RSM) based on the central composite design with immobilized titania nanoparticles. Industrial & Engineering Chemistry Research. 2012 Mar 7;51(11):4199-207.
[20] Sakkas VA, Islam MA, Stalikas C, Albanis TA. Photocatalytic degradation using design of experiments: a review and example of the Congo red degradation. Journal of Hazardous Materials. 2010 Mar 15;175(1-3):33-44.
[21] So CM, Cheng MY, Yu JC, Wong PK. Degradation of azo dye Procion Red MX-5B by photocatalytic oxidation. Chemosphere. 2002 Feb 1;46(6):905-12.
[22] Chong MN, Jin B, Chow CW, Saint CP. A new approach to optimise an annular slurry photoreactor system for the degradation of Congo Red: Statistical analysis and modelling. Chemical Engineering Journal. 2009 Oct 1;152(1):158-66.
[23] Parra S, Stanca SE, Guasaquillo I, Thampi KR. Photocatalytic degradation of atrazine using suspended and supported TiO2. Applied Catalysis B: Environmental. 2004 Jul 30;51(2):107-16.
[24] Mascolo G, Comparelli R, Curri ML, Lovecchio G, Lopez A, Agostiano A. Photocatalytic degradation of methyl red by TiO2: Comparison of the efficiency of immobilized nanoparticles versus conventional suspended catalyst. Journal of Hazardous Materials. 2007 Apr 2;142(1-2):130-7.
[25] Jamali A, Vanraes R, Hanselaer P, Van Gerven T. A batch LED reactor for the photocatalytic degradation of phenol. Chemical Engineering and Processing: Process Intensification. 2013 Sep 1;71:43-50.
[26] Hou D, Goei R, Wang X, Wang P, Lim TT. Preparation of carbon-sensitized and Fe–Er codoped TiO2 with response surface methodology for bisphenol A photocatalytic degradation under visible-light irradiation. Applied Catalysis B: Environmental. 2012 Sep 25;126:121-33.