[1] Bartels M, Lin W, Nijenhuis J, Kapteijn F, Van Ommen JR. Agglomeration in fluidized beds at high temperatures: Mechanisms, detection and prevention. Progress in Energy and Combustion Science. 2008 Oct 1;34(5):633-66.
[2] Tardos G, Mazzone D, Pfeffer R. Destabilization of fluidized beds due to agglomeration part I: Theoretical model. The Canadian Journal of Chemical Engineering. 1985 Jun;63(3):377-83.
[3] Tardos G, Mazzone D, Pfeffer R. Destabilization of fluidized beds due to agglomeration part I: Theoretical model. The Canadian Journal of Chemical Engineering. 1985 Jun;63(3):377-83.
[4] J. Seville, R. Clift, The effect of thin liquid layers on fluidisation characteristics, Powder Technology, 37 (1984) 117-129.
[5] van Ommen JR, Coppens MO, van den Bleek CM, Schouten JC. Early warning of agglomeration in fluidized beds by attractor comparison. AIChE Journal. 2000 Nov;46(11):2183-97.
[6] Zarghami R. Conditional monitoring of fluidization quality in fluidized beds. Ph. D. Dissertation, University of Tehran. 2009.
[7] Bai D, Bi HT, Grace JR. Chaotic behavior of fluidized beds based on pressure and voidage fluctuations. AIChE Journal. 1997 May;43(5):1357-61.
[8] Kai T, Furusaki S. Methanation of carbon dioxide and fluidization quality in a fluid bed reactor—the influence of a decrease in gas volume. Chemical engineering science. 1987 Jan 1;42(2):335-9.
[9] Schouten JC, van den Bleek CM. Monitoring the quality of fluidization using the short‐term predictability of pressure fluctuations. AIChE Journal. 1998 Jan;44(1):48-60.
[10] Chong YO, O'dea DP, White ET, Lee PL, Leung LS. Control of the quality of fluidization in a tall bed using the variance of pressure fluctuations. Powder technology. 1987 Dec 15;53(3):237-46.
[11] van Ommen JR, Schouten JC, van den Bleek CM. An early-warning-method for detecting bed agglomeration in fluidized bed combustors. Delft University of Technology (NL); 1999 Jul 1.
[12] Bartels M, Nijenhuis J, Kapteijn F, Van Ommen JR. Detection of agglomeration and gradual particle size changes in circulating fluidized beds. Powder Technology. 2010 Aug 25;202(1-3):24-38.
[13] Abbasi M, Sotudeh‐Gharebagh R, Mostoufi N, Zarghami R, Mahjoob MJ. Nonintrusive characterization of fluidized bed hydrodynamics using vibration signature analysis. AIChE Journal. 2010 Mar;56(3):597-603.
[14] Azizpour H, Sotudeh-Gharebagh R, Zarghami R, Abbasi M, Mostoufi N, Mahjoob MJ. Characterization of gas–solid fluidized bed hydrodynamics by vibration signature analysis. International Journal of Multiphase Flow. 2011 Sep 1;37(7):788-93.
[15] Book G, Albion K, Briens L, Briens C, Berruti F. On-line detection of bed fluidity in gas–solid fluidized beds with liquid injection by passive acoustic and vibrometric methods. Powder technology. 2011 Jan 10;205(1-3):126-36.
[16] Staniforth JN, Quincey SM. Granulation monitoring in a planetary mixer using a probe vibration analysis technique. International journal of pharmaceutics. 1986 Oct 1;32(2-3):177-85.
[17] Diks C, Van Zwet WR, Takens F, DeGoede J. Detecting differences between delay vector distributions. Physical Review E. 1996 Mar 1;53(3):2169.
[18] Shiea M, Sotudeh-Gharebagh R, Azizpour H, Mostoufi N, Zarghami R. Predicting transition velocities from bubbling to turbulent fluidization by S-statistics on vibration signals. Particulate Science and Technology. 2013 Jan 1;31(1):10-5.
[19] Wen CY, Yu YH. A generalized method for predicting the minimum fluidization velocity. AIChE Journal. 1966 May 1;12(3):610-2.
[20] Bi HT, Grace JR. Effect of measurement method on the velocities used to demarcate the onset of turbulent fluidization. The Chemical Engineering Journal and the Biochemical Engineering Journal. 1995 May 1;57(3):261-71.
[21] Ruelle D. The Claude Bernard Lecture, 1989-Deterministic chaos: the science and the fiction. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences. 1990 Feb 8;427(1873):241-8.
[22] Johnsson F, Zijerveld RC, Schouten JV, Van den Bleek CM, Leckner B. Characterization of fluidization regimes by time-series analysis of pressure fluctuations. International journal of multiphase flow. 2000 Apr 1;26(4):663-715.
[23] Zarghami R, Mostoufi N, Sotudeh-Gharebagh R. Nonlinear characterization of pressure fluctuations in fluidized beds. Industrial & Engineering Chemistry Research. 2008 Nov 5;47(23):9497-507.
[24] Takens F. Detecting strange attractors in turbulence. InDynamical systems and turbulence, Warwick 1980 1981 (pp. 366-381). Springer, Berlin, Heidelberg.
[25] Van der Schaaf J, Schouten JC, Van den Bleek CM. Origin, propagation and attenuation of pressure waves in gas—solid fluidized beds. Powder Technology. 1998 Mar 1;95(3):220-33.
[26] Addison PS. Fractals and chaos: an illustrated course. CRC Press; 1997 Jan 1.
[27] Theiler J. Spurious dimension from correlation algorithms applied to limited time-series data. Physical review A. 1986 Sep 1;34(3):2427.
[28] Kantz H, Schreiber T. Nonlinear time series analysis. Cambridge university press; 2004.
[29] Tamadondar MR, Zarghami R, Azizpour H, Mostoufi N, Chaouki J, Radmanesh R. Using S-statistic for investigating the effect of temperature on hydrodynamics of gas–solid fluidization. Particuology. 2013 Jun 1;11(3):288-93.
[30] Fraser AM, Swinney HL. Independent coordinates for strange attractors from mutual information. Physical review A. 1986 Feb 1;33(2):1134.
[31] Azizpour H, Hadadi-Sisakht B, Norouzi HR, Sotudeh-Gharebagh R, Zarghami R, Mostoufi N. Detecting sudden changes in fluidization by wall vibration. Particulate Science and Technology. 2014 Jul 4;32(4):412-7.
[32] Azizpour H, Sotudeh-Gharebagh R, Mostoufi N, Zarghami R. Characterization of regime transition in fluidized beds at high velocities by analysis of vibration signals. Industrial & Engineering Chemistry Research. 2012 Feb 10;51(7):2855-63