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Abstract 
The main objective of this study is the modelling and optimization of an industrial Hydrocracker 

Unit (HU) by means of Adaptive Neuro Fuzzy Inference System (ANFIS) model. In this case, some 
data were collected from an industrial hydrocracker plant. Inputs of an ANFIS include flow rate of fresh 
feed and recycle hydrogen, temperature of reactors, mole percentage of H2 and H2S, feed flow rate and 
temperature of debutanizer, pressure of debutanizer receiver, top and bottom temperature and pressure 
of fractionator column. The network was employed to calculate the flow rate of gas oil, kerosene, Light 
Naphtha (LN), and Heavy Naphtha (HN).Unseen data points were used to check generalization 
capability of the best network. There were good adjustment between network estimations and unseen 
data. Finally optimization was performed to maximize the production volume percent of gas oil, 
kerosene, HN and LN and to identify the sets of optimum operating parameters in order to maximize 
yields of mentioned product. Optimum conditions were found as feed flow rate of 90.9 m3/h, reactor 
temperature of 378.4 °C, hydrogen flow rate of 54.31 MSCM/h and LN (feed vol.%) of 9.34. 

 

Keywords: Adaptive neuro fuzzy inference system, Modelling, Hydrocracker unit   
 

Introduction 
     One of the major refining units in oil 
refineries is hydrocracker unit. Hydro-
cracking is a catalytic cracking process 
which has high conversion. Cracking 
conversion of a hydrocracker unit (HU) is 
more important than fluid catalytic cracking 
units and moreover hydrogen partial 
pressure of the unit is higher than hydro-
desulphurization processes [1]. In this 
process, hydrogen purifies the hydrocarbon 
stream from sulfur and nitrogen hetero-
atoms. The process produces saturated 
hydrocarbons. The main products for HU 
are jet fuel and diesel, also relatively high 
octane rating gasoline and LPG are 
produced. All these products contains very 
low content of sulfur and other 
contaminants [2]. For the modeling of the 
HU, the First Principle Models (FPMs) are 
common, but the complete development of 
these models can be very complex. Most of 
the industrial chemical and petrochemical 
processes are typically complex in nature 
due to unknown reaction chemistry, 
nonlinear relations and numerous involved 
variables [3]. Heavy and time-consuming 
computations are sometimes drawbacks of 

FPMs. Sometimes, in FPMs, complex 
partial differential equations or complex 
algebraic equations appear which should be 
solved analytically or numerically. Also, 
some phenomena, for example, kinetics of 
HU reactions are still not well-understood to 
develop an accurate mathematical model 
[4]. ANN modeling is a good alternative to 
FPMs to manage the mentioned 
complexities since it only requires the input-
output data as opposed to a detailed 
knowledge of a system. In addition, ANN 
requires less computational time and allows 
estimation of every continuous and 
nonlinear function with high precision. 
Because of these features, ANN is very 
popular for modeling, simulation, 
optimization and control of processes in 
petrochemicals and refineries [5-12]. Al-
Enez and Elkamel have focused on 
predicting the effect of feed stock on the 
properties and the product yield for a Fluid 
Catalytic Cracking (FCC) unit. They used 
feed forward ANN to predict the yield of 
propane, butane, n-butane, iso-butane, 
propylene, butylene, light gas, gasoline, 
light cycle oil, heavy cycle oil and coke as 
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well as conradson carbon number. Only 
four properties of feed including °API, 
Watson characterization factor, sulfur 
content and volume conversion percent of 
liquid were introduced to NN as inputs. 
Their model gave better prediction than 
non-linear regression and commercial 
simulators models [5]. An ANN hybrid 
model was used by Bollas et al., 2003 to 
scale up a FCC pilot plant into an industrial 
scale plant. The pilot model was able to 
predict the conversion weight percent and 
the coke yield. The hybrid model was then 
compared with the pilot model and the pure 
ANN model. The results showed that the 
hybrid model has better extrapolation 
capacity [7].The crude oil description using 
the near infrared spectroscopy was 
performed by Falla et al., 2006. This 
analysis was called SimDis (Simulation 
Distillation) and was faster than the true 
boiling point method. Forty oil samples 
with API of 1.31-36.4 were gathered. The 
ANN was applied, which generated the 
SimDis curves accurately [9]. Aminian and 
Shahhosseini (2008) used ANN to predict 
the fouling behavior of a crude oil preheat 
heat exchangers. They also used sensitivity 
analysis known as the “sequential zeroing of 
weights” to determine the effects of various 
parameters on fouling [13]. Design of the 
expert system for an industrial distillation 
column using NN and its optimization using 
genetic algorithm was performed by 
Motlaghi Jalali and Nili Ahmadabadi, 2008. 
They used the operating conditions and the 
product quality as ANN input and outputs, 
respectively. Then, the oil production cost 
function was minimized [14].This research 
used an ANFIS technique for modeling, and 
optimization of a HU process. The 
mentioned work began with the 
development of a detailed industrial ANFIS 
model for HU. Finally, optimization of the 
HU process was performed with the 
objective of maximizing the volume percent 
of gas oil, kerosene, HN and LN. 
 

1.1. Hydrocracker unit (Isomax Unit) 
     Figure 1 shows process flow diagram of  

the Tabriz refinery HU (Arak, 2014). The 
unit, which is commercially known as the 
Isomax Unit has been designed to refine 
15000 barrel/day of vacuum gas oil and to 
produce high quality middle-distillate 
products such as naphtha, kerosene and gas 
oil. This unit comprises of three sections: 
make-up compressor section, reactor section 
and fractionation section. In make-up 
compressor section, 96.5% hydrogen gas is 
compressed during three stages to increase 
the pressure of hydrogen gas from 15.5 kgf/ 
cm2 to 190 kgf/cm2. The feed is mixed with 
bottom recycles and hydrogen gas and then 
is introduced to the reactor. Reactions occur 
in a fixed bed reactor then after separation 
of light gases the products flow to the 
fractionation section. The fractionation 
section includes debutanizer tower, 
fractionation tower, splitter and stripper. 
 

2. Adaptive neuro fuzzy inference 
system (ANFIS)  
     Fuzzy logic has been introduced by L. 
Zadeh in 1965 to deal with possibility 
theory (Zadeh, 1965) [15]. Concept of 
partial truth and some types of the 
uncertainty in the real are the point of L. 
Zadeh departure in order to introduce fuzzy 
logic. Fuzzy logic belongs to the uncertainty 
theory actually. Also artificial neural 
networks are introduced based on properties 
of biological neurons in order to efficiently 
use in control, estimation, classification, 
clustering, classify and other area of 
artificial intelligence. In the field of 
artificial intelligence, neuro-fuzzy refers to 
combinations of artificial neural networks 
and fuzzy logic. Neuro-fuzzy was proposed 
by Jang et al. (1997) [16]. Neuro-fuzzy 
hybridization results in a hybrid intelligent 
system that synergizes these two techniques 
through combining the human-like 
reasoning style of fuzzy systems with the 
learning and connectionist structure of 
neural networks. Neuro-fuzzy hybridization 
is widely termed as fuzzy neural network 
(FNN) or neuro-fuzzy system (NFS) in the 
literatures. 
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Figure 1: Process flow diagram of a hydrocracking unit (Isomax unit) 
 
     Fuzzy systems and neural networks are 
both very popular techniques that have seen 
increasing interest in recent decades. At a 
first glance, they seem to be totally different 
areas with merely marginal connections. 
However, both methodologies belong to the 
soft computing area. Soft computing 
includes approaches to human reasoning 
and learning that try to make use of the 
human tolerance for incompleteness, 
uncertainty, imprecision and fuzziness in 
decision-making processes. Many different 
structures for fuzzy neural networks (FNNs) 
have been proposed previously (Zhou et al. 
2002) [17]. Among them ANFIS is a neural-
network based on fuzzy approach, in which 
the learning procedures are performed by 
interleaving the optimization of parameters 
of the antecedent and conclusion parts 
(Aliyari et al. 2009) [18]. ANFIS uses a 
feed forward network to search for fuzzy 
decision rules that perform well on a given 
task. Using a given input-output dataset, 
ANFIS creates a FIS whose membership 
function parameters are adjusted using a 
back-propagation algorithm alone or a 

combination of a back-propagation 
algorithm with a least squares method. This 
allows the fuzzy systems to learn from the 
data being modeled. Consider a first order 
Takagie-Sugeno fuzzy model with a two 
input, one output system having two 
membership functions for each input. Then, 
the functioning of ANFIS is a five-layered 
feed-forward neural structure, and the 
functionality of the nodes in these layers 
can be summarized as: 
 

 xO
iAi 1  

 yO
iBi 2

1


   

(1)

 

    Where x or y is the input to the node, Ai 
or Bi-2 is a fuzzy set associated with this 
node. At the first layer, for each input, the 
membership grades in the corresponding 
fuzzy sets are estimated. At the second 
layer, all potential rules between the inputs 
are formulated by applying fuzzy 
intersection (AND). The product operation 
is used to estimate the firing strength of 
each rule. 
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     The third layer is used for estimation of 
the ratio of the ith rule’s firing strength to 
the sum of all rule’s firing strengths. 
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     Where ωi is the output of layer 3 and {pi, 
qi, ri} is the parameter set. Parameters in 
this layer will be referred to as consequent 
parameters. The final layer computes the 
overall output as the summation of all 
incoming signals from layer 4. 
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     Optimizing the values of the adaptive 
parameters is of vital importance for the 
performance of the adaptive system. Jang et 
al. (1997) [16] developed a hybrid learning 
algorithm for ANFIS which is faster than 
the classical back-propagation method to 
approximate the precise value of the model 
parameters. The hybrid learning algorithm 
of ANFIS consists of two alternating 
phases: (1) gradient descend which 
computes error signals recursively from the 
output layer backward to the input nodes, 
and (2) least squares method, which finds a 
feasible set of consequent parameters. We 
observe that, given fixed values of elements 
of premise parameters, the overall output 
can be expressed as a linear combination of 
the consequent parameters. 
     There are different advanced fuzzy 
inference techniques. In this study, we have 
used one kind of them that generates a 
Sugeno-type FIS structure using subtractive 
clustering and requires separate sets of input 
and output data as input arguments. When 
there is only one output, it may be used to 
generate an initial FIS for ANFIS training. 
It accomplishes this by extracting a set of 
rules that model the data behavior. The rule 
extraction method first uses the sub-cluster 

function to determine the number of rules 
and antecedent membership functions and 
then uses linear least squares estimation to 
determine each rule’s consequent equations. 
This function returns an FIS structure that 
contains a set of fuzzy rules to cover the 
feature space. The arguments for the 
advanced fuzzy inference technique are as 
follows: 
 

 Xin is a matrix in which each row 
contains the input values of a data 
point. 

 Xout is a matrix in which each row 
contains the output values of a data 
point. 

 Radii is a vector that specifies a 
cluster center’s range of influence in 
each of the data dimensions, 
assuming the data falls within a unit 
hyper box. 

 

     Membership function (MF) is a curve 
that defines how each point in the input 
space is mapped to a membership value (or 
degree of membership) between 0 and 1. 
The input space is sometimes referred to as 
the universe of discourse, a fancy name for 
a simple concept. There are different kinds 
of membership functions as follows: 
 

 Triangular membership function 
 Trapezoid membership function 
 Gaussian membership function 
 Bell membership function 
 Linear membership function 

 

     The default input membership function 
type in this study is Gaussian, and the 
default output membership function type is 
linear. Table 1 summarizes the inference 
methods and their types. 
     A structure of ANFIS is presented in 
Figure 2. Tables 2 and 3 show HU variables 
and their operating range. 
     For parameter estimation, the summation 
of squared error, SQE, was minimized, as 
given below: 
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     In Eq. (6), Nt, Ykj
means and Ykj

pred are the 
number of test runs, measured product yield 
and predicted by model, respectively. 
     To investigate the suitability of the 
fitting, the average absolute deviation of 
predictions (AAD%), presented in the 

literature [18], was calculated by Eq. (7) as 
below. 
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Table 1: Inference methods and their types 

Inference method Type Prod  
AND (T-norm, intersection) Min   

OR (S-Norm, union) Max Probor (probabilistic OR)  
Implication Prod (product) Min (minimum)  
Aggregation Max (maximum) Sum Probor (probabilistic ORa) 

ahttp://www.mathworks.com/help/toolbox/fuzzy/probabilisticruleagg.html. 
 
 

 
 

Figure 2: Adaptive Neuro-Fuzzy Inference System (ANFIS) structure 
 
 

Table 2: The range of input variables of Arak HU 
Variable Range 
Fresh feed flow rate (m3/h) 0.6-100 
Recycle hydrogen flow rate(KNM3/h) 10-70 
Reactors temperature  (ºC) 377.3-378.9 
Recycle feed flow rate (m3/h) 4.3-102.9 

Fresh hydrogen flow rate (KNM3/hr) 2.24-27.95 
H2S (% mol) 0.3-0.7 

H2 (% mol) 46-65 

Debutanizer feed temperature (°C) 156-189 
Debutanizer feed flow rate (m3/h) 14-134 
Pressure of debutanizer receiver (kg/cm2) 11-14 
Temperature of top frctionator column (°C) 104-129 
Temperature of bottom frctionator column (°C) 265-284 
Pressure of frctionator column (kg/cm2) 0.2-0.62 

 
 

Table 3: The range of output variables of Arak HU 
Variable Range 
Gas oil flow rate (m3/hr) 0-63.5 
Kerosene flow rate (m3/hr) 0-61 
LN flow rate (m3/hr) 0-17.22 
HN flow rate (m3/hr) 0-35.35 
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Table 4: The used data for estimation and validation of model 

  T (oC)   
 378 380 382 384 

RHFRa = 10KNm3h–1 estimation estimation validation estimation 
RHFRa= 30KNm3h–1 validation estimation estimation estimation 
RHFRa= 50 KNm3h–1 estimation estimation estimation validation 
RHFRa= 70KNm3h–1 estimation validation estimation estimation 

aRecycle Hydrogen Flow Rate 
 

Table 5: AAD% of different membership function for data prediction by ANFIS 
 Bell shape π shape Sigmoid shape Triangular shape Trapezoidal shape Gaussian shape 

Gas oil 35.67 7.79 9.96 4.34 10.22 36.16 
Kerosene 22.56 7.56 5.43 13.12 5.25 14.19 

L. Naphtha 31.35 10.19 6.04 4.45 4.35 33.49 
H. Naphtha 49.11 12.24 15.56 19.02 15.96 53.76 

Average 34.67 9.44 9.25 10.23 8.94 34.40 
 
 
3. Results and discussion 
     To create the neuro-fuzzy inference 
system, Matlab-fuzzy logic toolbox version 
2011a (Mathworks, Inc.) and ANFIS syntax 
were used. This syntax is the major training 
routine for Sugeno-type fuzzy inference 
systems. ANFIS uses a hybrid learning 
algorithm to identify parameters of Sugeno-
type fuzzy inference systems. It applies a 
combination of the least-squares method 
and the back propagation gradient descent 
method for training fuzzy inference system 
membership function parameters to emulate 
a given training data set. The type of 
membership functions associated with 
hydro cracking unit was selected from all 
supported types in Matlab. To train the 
fuzzy model, three fuzzy rules were selected 
from the ANFIS toolbox, and the training 
process was stopped whenever the 
designated epoch number (17) was reached.  
For the hydrocracker unit, the input vector 
consists of RHFR and temperature, while 
the output one is the yield of products. To 
train the network, the Table 4 were selected 
and the four remained data were used to 
validation. 
     After training the neuro-fuzzy inference 
system with ANFIS syntax, the input data 
for the remaining data, simulated by trained 
ANFIS and yield of products, were 
predicted by the Evalfis syntax. 
     The trial with different functions showed 
that the prediction results with trapezoidal-

shape curve resulted in better predictions 
than other ones, also sigmoid, π-shaped, and 
triangular-shaped were approximately as 
accurate as trapezoidal-shape. AAD% for 
gas oil, kerosene, light naphtha, and heavy 
naphtha are presented in Table 5. 
     As observed, the prediction of ANFIS 
for products by all membership functions 
except for Bell and Gaussian shapes were 
lower than 20%, which was better than 
other models such as kinetic base model in 
such a wide range of operating conditions 
(RHFR and temperature). Moreover, from 
the results presented in Table 5, it can be 
concluded that the best membership 
function for gas oil, kerosene, light and 
heavy naphtha were triangular, trapezoidal, 
trapezoidal and π-shaped, respectively. For 
other products, trapezoidal shape showed 
the best results. Therefore, a hybrid multi 
membership ANFIS can be the most 
predictive model for an industrial 
hydrocracker plant. 
The parity plots to compare measured and 
predicted by the ANFIS with trapezoidal 
membership are shown in Figures 3–6. As it 
can be understood from them, these figures 
show the ANN outputs versus the number 
of unseen industrial data. These figures 
show good capability of both ANFIS for 
estimation of unseen data. 
     Figures 3 to 6 illustrate that the 
simulation of validation data for the 
products with uniform trend are acceptable. 
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Moreover, it can be seen from these parity 
plots that predictions have acceptable 
agreement with actual data, and the high 
value of AAD% is related to only one data 
point in the low yields. 
     Furthermore, it can be understood from 
Figure 6 that there is acceptable agreement 
between the experimental and predicted 
values for heavy naphtha; however, the high 

average absolute deviation of this lump, 
reported in Table 5 (15.96 with Trapezoidal 
membership), is because of their low 
experimental yields which shows a flagrant 
deviation when they are dominators in Eq. 
(7). 
     Figure 7 illustrates the effect of 
temperature on LN, HN and kerosene 
percent. 

 
 

 
Figure 3: Comparison of measured flow rate of gas oil with values predicted by trained ANFIS 

 
 
 
 

 
Figure 4: Comparison of measured flow rate of kerosene with values predicted by trained ANFIS 
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Figure 5: Comparison of measured flow rate of LN with values predicted by trained ANFIS 

 
 
 
 

 
Figure 6: Comparison of measured flow rate of HN with values predicted by trained ANFIS 

 
 
     Figure7 illustrates the effect of 
temperature on the gas oil, kerosene, LN 
and HN percent while feed flow rate and 
inlet hydrogen flow rate are set in their 
average values. As shown in this figure, 
temperature is the most affective input 
variable. As reactor temperature changes 
from 377 to 379.5°C, the trend of the 

volume percent of gas oil, kerosene, LN and 
HN changes according to Figure7 (a)–(d), 
respectively. 
     Also Figures 8 and 9 illustrates the effect 
of total feed and recycle hydrogen flow rate 
on LN, HN and kerosene percent 
respectively. 
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Figure 7: The effect of temperature on the volume percent of  

(a) gas oil, (b) kerosene, (c) LN, and (d) HN 
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Figure 8: The effect of total feed flow rate on the volume percent of  

(a) gas oil, (b) kerosene, (c) LN, and (d) HN 
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Figure 9:The effect of hydrogen flow rate on the volume percent of  

(a) gas oil, (b) kerosene, (c) LN, and (d) HN 
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     Similar to temperature, the effect of total 
feed flow rate (make up and recycle) on the 
volume percent of gas oil, kerosene, HN 
and LN was evaluated and the obtained 
results are shown in Figure 8. In this figure, 
feed flow rate (make up and recycle) is 
changed from 0 to 100m3/h, while the 
temperature of reactors and hydrogen inlet 
flow rate are set in their average values. As 
illustrated in Figure8, the more feed flow 
rate, the more production of kerosene and 
HN while LN and gas oil show decrease. 
These results will help to obtain the 
optimum values of these products. 
     Similarly, the effect of hydrogen flow 
rate (make up and recycle) on the volume 
percent of gas oil, kerosene, LN and HN are 
shown in Figure 9.  As shown in this figure, 
with increasing hydrogen flow rate kerosene 
and LN production increases while gas oil 
and HN production decreases. 
 

 
 

4. Conclusions  
     In this paper, the ANFIS technique was 
used to simulate and optimize an industrial 
HU. For this purpose, ANFIS model of the 
unit was developed based on industrial data. 
Finally, the obtained networks were applied 
to predict plant optimum operating 
conditions in order to maximize the volume 
percent of gas oil, kerosene, HN and LN as 
objective functions. Between all supported 
membership functions in the Matlab 
software, the trapezoidal cure was the most 
appropriate shape for the industrial 
Hydrocracker Plant. This study again 
emphasizes ANFIS capability to increase 
productions and keep plants running in 
more economical conditions. The ability of 
ANFIS in developing models for very 
complicated plant and analyzing the plant 
was confirmed. Based on current increasing 
fuel price the developed model easily can 
give us optimum operating condition of the 
HU while using traditional model, this is 
very difficult to achieve. 
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