
Journal of Chemical and Petroleum Engineering 2019, 54(1): 91-97 
DOI: 10.22059/jchpe.2020.291086.1297 

 

RESEARCH PAPER   

 

Modeling of the Hydrocracking Reactor by the CESE 

Method 

Armin Hadianifara, Ahmad Hallajisanib,*, Sorood Zahedic 

a. Fouman Faculty of Engineering, College of Engineering, University of Tehran 

b. Caspian Faculty of Engineering, College of Engineering, University of Tehran 

c. Research Institute of Petroleum Industry, Catalyst Research Center   

Received: 20 October 2019, Revised: 30 May 2020, Accepted: 22 June 2020 

© University of Tehran 2020 

Abstract  
In this article, the improved space-time conservation element and solution element 

(CESE) method are used to simulate the dynamic treatment of the hydrocracking 

reactor. The dynamic model consists of four lumps: vacuum gas oil (VGO), middle 

distillate, naphtha, and gas which is dissolved by this method. The offered method 

can solve the partial differential equations caused by the reactions inside the 

hydrocracking reactor. In this study, both temperature and mole fraction variables 

are solved explicitly and simultaneously. In the CESE method, to obtain a suitable 

answer to the dynamic model, a CFL insensitive scheme was used which, for the 

CESE method to be stable, the CFL number should be less than 1. In this work, 

obtained results from the CESE method, in good agreement with the data industry. 

Outcomes illustrate that AAD% of the yield forecast for the middle distillate, 

naphtha, and gas are 3.33%, 2.56 %, and 6.47%, respectively. This method unlike 

other contractual numerical methods treats with space and time coordinates Similar.   
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Introduction 

The hydrocracking process is the most versatile of refinery conversion processes to promote 

heavy feedstocks to middle distillates. It can process a broad range of feedstocks from naphtha 

to asphalt to yield any favorable product with a molecular weight lower than that of the 

feedstock. The continuing advancements in this process are accredited to advancements in 

catalysts with ameliorate activity and selectivity, process adjustment, reactor plan, and access 

of relatively low-cost hydrogen from the amending process. Generally, Models are used to 

forecasts product yield and the effects of reactor operating conditions, such as pressure, 

temperature, and LHSV on the quality and yields of the products. Most researchers have worked 

on these lumping techniques and simulation of hydrocracking.  In the writing, there are only a 

few released works on the numerical modeling of the hydrocracking process. Kumar and Sinha 

[1] reported a one-dimensional steady-state model to check the manner of hydrocracking 

reactions in the pivotal side of the reactor and examined the efficacy of various values of length 

of the reactor, temperature, and LHSV of the reactor on the product of yields. The ODEs 

characterizing the mass balances in the reactor were solved by the fourth-order Runge-Kutta 

method. Liu et. al [2] considered a dynamic model to simulation the hydrotreating process and 

investigated the efficacy of operating conditions such as bed temperature and LHSV on the 

reaction efficiency via simulate studies exerting the FDM. The method of CESE is a novel 

numeric method for dissolve equations of mass and energy hydrocracking reactor. It is the 
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method proposed by Chang [3] from 1991 to the present. The CESE method has advantages: 

(1) it is an explicit scheme and differs the traditional numerical method [4], (2) High accuracy 

in capturing discontinuity, (3) good performance in non-reflecting boundary condition 

treatment. In the CESE method, both the autonomous current variables and their derivatives are 

behaved as unfamiliar and are dissolved at the same time. This reality that the CESE method is 

being with success applied to disciplines other than the ones that it emanated from, renders a 

powerful verification of the generality of this method. In the following, some of the works about 

the CESE method, which have appeared to date, are included. The CESE method was used to 

solve Euler and Navier-Stokes one-dimension equations in 1993 [5]. In 1995, Chang [4] 

Proposed a CESE method, and integrity explains the CESE method. In 1996, flows caused by 

shock-body interactions were studied using the CESE method [6]. Its application in unsteady 

flows with chemical reactions started in 1997. The propagation of voice waves via a nozzle by 

a shake wave was resolved using the CESE method in 2000 [7]. In 2019, this method was used 

for computational fluid dynamics [8] and in 2020, Checked out Numeric analysis of drops 

coagulation in fossa stream using the CESE method [9]. The goal is to solve the equations of 

mass and energy of the hydrocracking unit reactor.  

Reaction Network 

This study considered four lumps, i.e., VGO, distillate, naphtha, and gas in accordance with the 

original products produced in a pilot-scale hydrocracking reactor. Fig. 1, illustrates the process 

pathways associated with the mentioned strategy. 

 

Fig. 1. Reaction scheme for kinetic model [10] 

Model Development 

To develop the existing model, the under main suppositions are considered: 

a. Polymerization reaction and diffusion Effects are not in regard. 

b. Plug flow pattern in the hydrocracking reactor is assumed trickle-bed. 
c. Hydrogen feed is considered to be sheer. 

d. All the materials are considered in the liquid phase. 

e. Fixed catalyst activity has been considered.  

f. Hydrocracking reactions are considered first-order. 

For each hydrocracking reactor reaction, a kinetic explanation (k) is formulated as a 

subordinate of mole concentration and kinetic parameters (k0, E). Thus, the kinetic constants 

of the offered model are: 

𝐾1 = 𝐾01 exp (
−𝐸1

𝑅𝑇
) (1) 

𝐾2 = 𝐾02 exp (
−𝐸2

𝑅𝑇
) (2) 

𝐾3 = 𝐾03 exp (
−𝐸3

𝑅𝑇
) (3) 

𝐾4 = 𝐾04 exp (
−𝐸4

𝑅𝑇
)  (4) 
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In Eqs. 1 to 4, R and T are the ideal gas constant and temperature, respectively. Therefore, 

the hydrocracking reaction (𝑅𝑖) is assumed: 

𝑓𝑒𝑒𝑑:  𝑅𝐹 = −𝑘1 𝐶𝐹 − 𝑘2𝐶𝐹 (5) 

𝑑𝑖𝑠𝑡𝑖𝑙𝑙𝑎𝑡𝑒:  𝑅𝐷 = 𝑘1 𝐶𝐹 − 𝑘3𝐶𝐷 (6) 

naptha:   𝑅𝑁 = 𝑘3 𝐶𝐷 − 𝑘2𝐶𝑁 (7) 

𝑔𝑎𝑠:  𝑅𝐺 = 𝑘1 𝐶𝐹 + 𝑘4𝐶𝑁 (8) 

where 𝐶𝐹, 𝐶𝐷, 𝐶𝑁  and 𝐶𝐺 are the mole concentration of VGO, distillate, naphtha, and gas.  

According to the law of conservation, mass and energy balances are written as follows: 

𝑑𝑐𝑖

𝑑𝑡
+

𝑑

𝑑𝑣
(𝑄𝐶𝑖) = 𝜖ℐ𝑅𝑖    (9) 

𝑑𝑇

𝑑𝑡
+

𝑑(𝑄𝑇)

𝑑𝑣
=

∑ 𝜖ℐ 𝑅𝑖(−𝛥𝐻𝑟)
𝑚
𝑖=1

∑ 𝐶𝑖𝐶𝑝𝑖
𝑛
𝑖=1

   (10) 

where i is from VGO lump to gas; C is the mole concentration of lump; Q is the volume flow 

rate; 𝜖 is the catalyst volume fraction (0.35) [10]; ℐ is the catalyst effectiveness factor (0.7) 

[10]; 𝐶𝑝𝑖 is the heat capacity of component i; 𝛥𝐻𝑟 is the heat of the cracking reaction. 

Numerical Methods 

CESE Method                                               

In the CESE method, flux conservation is executed both locally and globally over space and 

time. This flux conservation enforcement is an integral part of the process and no extrapolation 

or interpolation is needed. This method unlike other contractual numerical methods treats with 

space and time coordinates Similar. For ease, Eqs. 9 and 10 can be rewritten in the under form: 

𝑑𝑈𝑚

𝑑𝑡
+

𝑑𝐹𝑚
𝑑𝑣

= 𝑅𝑚 (11) 

 

where Um = [
Ci

𝑇
] , Fm = [

QCi

𝑄𝑇
] and Rm = [

𝜖ℐ𝑅𝑖

∑ 𝜖ℐ 𝑅𝑖(−𝛥𝐻𝑟)
𝑚
𝑖=1

∑ 𝐶𝑖𝑐𝑝𝑖
𝑛
𝑖=1

]. Let x1 = v and x2 = t denote the 

coordinates of a Euclidean space 𝐸2. By applying the Gaussian divergence theorem in 𝐸2, Eq. 

11 can be converted into the under integral protection form: 

∮ ℎ⃗ 𝑚. 𝑑𝑠
𝑠v

= ∫ 𝑅𝑚

v

 (12) 

where ℎ⃗ 𝑚 = (Fm,Um) is the space-time flux in 𝐸2, and S(V) is the border of a space-time region 

V in the 𝐸2. Also, the right-hand side of Eq. 12 is a volume integration indicating the interior 

heat produced over region V. 

As shown in Fig. 2, the Euclidean space 𝐸2 is segregated into an array of non-overlapping 

rectangular regions referred to as conservation elements (CEs). For any (v,t) ϵ SE(j,n), let 

hm, Fm and Um be approximated by ℎ∗
𝑚 ,  𝐹∗

𝑚 and 𝑈∗
𝑚 respectively, can be demonstrated by 

the first-order Taylor series: 

𝑈∗
𝑚(𝑣, 𝑡; 𝑗, 𝑛) = 𝑈𝑚(𝑛, 𝑗) + 𝑈𝑚𝑣(𝑛, 𝑗)(𝑣 − 𝑣𝑗) + 𝑈𝑚𝑡(𝑛, 𝑗)(𝑡 − 𝑡𝑗) (13) 

 𝐹∗
𝑚(𝑣, 𝑡; 𝑗, 𝑛) = 𝐹𝑚(𝑛, 𝑗)  +𝐹𝑚𝑥(𝑛, 𝑗)(𝑣 − 𝑣𝑗) + 𝐹𝑚𝑡(𝑛, 𝑗)(𝑡 − 𝑡𝑗)  (14) 
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ℎ∗
𝑚(𝑣, 𝑡; 𝑗, 𝑛)    = (𝑈∗

𝑚(𝑣, 𝑡; 𝑗, 𝑛), 𝐹∗
𝑚(𝑣, 𝑡; 𝑗, 𝑛)) (15) 

 
Fig. 2. Schematic image of CESE plot 

Let for any (v,t) ϵ SE(j,n), Um = U∗
m(v, t; j, n) and Fm = F∗

m(v, t; j, n) in to Eq. 11: 

𝜕𝑈∗
𝑚(𝑣, 𝑡; 𝑗, 𝑛)

𝜕𝑡
 + 

𝜕𝐹∗
𝑚(𝑣, 𝑡; 𝑗, 𝑛)

𝜕𝑣
 =  𝑅∗

𝑚 (16) 

The discrete approximation of Eq. 12 shows that: 

∮ ℎ⃗ 𝑚. 𝑑𝑠 =  (𝑅𝑚)𝑗
𝑛 ×

∆𝑣𝛥𝑡

2𝑆(𝐶𝐸(𝑗,𝑛))

 (17) 

Finally, by synthesizing Eqs. 11-17, it can be shown that: 

𝑈𝑚(𝑛, 𝑗) − 𝑅𝑚(𝑛, 𝑗) ×
∆𝑡

2

=  
1

2
 [ (𝑈𝑚)

𝑗−
1
2

𝑛−
1
2 +

∆𝑣

4
 (𝑈𝑚𝑣)

𝑗−
1
2

𝑛−
1
2]      +  

∆𝑡

2∆𝑣
 [ (𝐹𝑚)

𝑗−
1
2

𝑛−
1
2 +

∆𝑣

4
 (𝐹𝑚𝑡)

𝑗−
1
2

𝑛−
1
2]

+ 
1

2
 [ (𝑈𝑚)

𝑗+
1
2

𝑛−
1
2 −

∆𝑣

4
 (𝑈𝑚𝑣)

𝑗+
1
2

𝑛−
1
2] −

∆𝑡

2∆𝑣
 [ (𝐹𝑚)

𝑗+
1
2

𝑛−
1
2 +

∆𝑣

4
 (𝐹𝑚𝑡)

𝑗+
1
2

𝑛−
1
2] 

(18) 

Eq. 18 represents the input fluxes to point (𝑛, 𝑗) from points (𝑛 −
1

2
, 𝑗 −

1

2
) and (𝑛 −

1

2
, 𝑗 +

1

2
) 

for the numerical solution of 𝑈𝑚(𝑛, 𝑗) from the previously computed values.  (𝑈𝑚𝑣) is given: 

(𝑢𝑚𝑣)𝑗
𝑛 =

(𝑢𝑚
′)

𝑗+
1
2

𝑛 − (𝑢′)
𝑗−

1
2

𝑛

∆𝑣
+ (2𝜀′ − 1)(𝑑𝑢𝑚𝑣)𝑗

𝑛 
(19) 

Where ε' is a parameter independent of numeric variables and its value is among 0 and 1 [11]. 

The CFL parameter controls the amount of the extended numeric dispersion. Here (𝑢𝑚
′)

𝑗±
1

2

𝑛   is 

represented in the n-direction from point (𝑢𝑚)
𝑗

𝑛−
1

2, and thus the following form is obtained: 

(𝑢𝑚
′)

𝑗±
1
2

𝑛 ≝ 𝑢𝑚
𝑗±

1
2

𝑛−
1
2 +

𝛥𝑡

2
(𝑢𝑚𝑡)

𝑗±
1
2

𝑛−
1
2   (20) 

(𝑑𝑢𝑚𝑣)𝑗
𝑛 ≝

(𝑢𝑚𝑣)
𝑗+

1
2

𝑛−
1
2 + (𝑢𝑚𝑣)

𝑗−
1
2

𝑛−
1
2

2
−

𝑢𝑚
𝑗+

1
2

𝑛−
1
2 − 𝑢𝑚

𝑗−
1
2

𝑛−
1
2

𝛥𝑣
 

(21) 
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By using the chain rule, for each m,k = 𝐹,𝐷,𝑁, 𝐺 𝑎𝑛𝑑 𝑇 we have: 

𝑓𝑚𝑣 = ∑ 𝑓𝑚,𝑘

𝑚

𝑘=1

 (22) 

𝑓𝑚𝑡 = ∑ 𝑓𝑚,𝑘𝑢𝑘𝑡

𝑚

𝑘=1

 (23) 

𝑓𝑚,𝑘 =
𝜕𝑓𝑚
𝜕𝑢𝑘

 (24) 

Results and Discussion 

Overall, Eqs. 11–24 show the usage of the CESE plot to the modeling of the coupled 

hydrocracking reactor. For simulation work, MATLAB software (Mathwork, Inc., 2013a) is 

used. By the CESE method and Eq. 18, both temperature and mole fraction (concentration) 

variables are solved explicitly and simultaneously. Fig. 3 shows the changes in temperature and 

mole fraction feed and product in unstable conditions. As shown in Fig. 3, over time feed 

becomes a valuable product in the hydrocracking reactor. Obviously, these conditions can 

create the maximum velocity of the volumetric flow within the specified range of operating 

conditions. (T=720°𝐾, LHSV=1.05, 𝐶𝐹𝐿 < 1). The kinetic parameters for each reaction are given in 

Table 1.    

Table 1. Kinetic parameters for reactions 

Activation 

energy 
𝒌𝒄𝒂𝒍 𝒎𝒐𝒍−𝟏 

Frequency 

factor 
𝒎𝟑𝒉−𝟏𝒎𝒄𝒂𝒕

−𝟑  

𝑬𝟏   14.4 𝐾01 1.99E+05 

𝑬𝟐   10.11 𝐾02 2.29E+01 

𝑬𝟑  8.32 𝐾03 2.2E+02 

𝑬𝟒   6 𝐾04 133E-03 

 

Consistency Analysis                                                                                                    

The consistency of the CESE method is investigated using the CFL number [12]. Such that if 

the under bet is limited, the answer is ever stable. 

𝐶𝐹𝐿 ≝
𝑄𝛥𝑡

𝛥𝑣
     (25) 

To calculate the number of CFL, the maximum rate is needed. This amount by Optimization 

using Genetic Algorithm is considered 234.12 𝑚3ℎ𝑟−1. The CESE parameters are determined 

as ∆𝑣 = 0.95𝑚3 and ∆𝑡 = 0.00405ℎ𝑟, respectively. The results obtained are compared with 

the available plant data in Table 2 and Table 3.  

Table 2. Comparison of simulated data using the CESE method and plant process data 

 
CESE 

method 

plant 

data 
AAD% 

Distillate 0.6400 0.6620 3.33E-02 

Naphtha 0.3622 0.2877 2.56E-01 

Gas 0.0477 0.0510 6.47E-02 
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Table 3. Compare temperature simulated using the CESE method and plant process data 

  plant 

data 

CESE  

method 

 

AAD% 𝑇𝑜𝑢𝑡(𝐾) 𝑇𝑜𝑢𝑡(𝐾) 𝑇𝑖𝑛(𝐾) 

3.133E-03 766 768.4 720 

 
Fig. 3. The response of the dynamic model dissolved by CESE (T=720°𝐾, LHSV=1.05, 𝐶𝐹𝐿 < 1) 

Conclusions 

 The improved CESE method is used to simulate the dynamic treatment of the hydrocracking 

reactor. The dynamic model consists of four lumps: vacuum gas oil (VGO), middle distillate, 

naphtha, and gas which is solved by this method. The offered method can solve the partial 

differential equations resulting from the hydrocracking reactions. In this method, both 

temperature and mole fraction variables are solved explicitly and simultaneously. The CESE 

method could predict the yield of middle distillate, naphtha, gas, and temperature with AAD% 

of 3.33 %, 2.56%, 6.47%, and 3.13% respectively. 

Symbols used 

AAD    [%]       absolute average deviation 

CFL     [-]         courant Friedrichs levy                                   
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LHSV  [ℎ−1]    liquid hourly space velocity                           

ODE    [-]         ordinary differential equation 

S          [𝑚2]     surface region 

n          [-]         time step size  Gas Reservoirs 

Abbreviations 

BC             border condition 

CE             conservation element 

SE              solution element 
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