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Abstract  
This study aims to develop an Adaptive Network-based Fuzzy Inference System 

technique (ANFIS) and using the parameters of a complex mathematical model in 

the RO membrane performances. The ANFIS was constructed by using a 

subtractive clustering method to generate initial fuzzy inference systems. The 

model trained by 70% of the data set and then its validity is examined by remained 

30% data set. The result indicated that this method could predict the performance 

of the RO membrane faster and more accurately than previous numerical 

techniques. The squared correlation coefficient between real data and predicted data 

of this technique was 0.9973 for separation factor, 0.9916 for NP and 0.9975 NT, 

which are better in comparison with numerical methods, and previous Artificial 

Neural network used by the author to model these membranes. It was observed that 

the squash factor, reject ratio, and accept ratio has no significant effect on ANFIS 

performance. Results showed that for all cases better performances achieved when 

this parameter has a value of more than 0.5, as 0.86 for separation factor, 0.91 for 

net pre flux, and 0.83 for total flux. This technique just takes a few seconds to model 

RO membrane performance which is very faster than other numerical methods. So, 

this technique could be a powerful method to predict RO membranes.   
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Introduction 

Membrane processes are attractive due to economic characteristics and lack of requirement for 

phase changing. Reverse osmosis (RO) used as a separation technique to remove a high amount 

of impurities from solutions in petrochemical and biochemical industries. RO is one of the most 

effective methods for the desalination process, treatment of oily wastewater in chemical process 

industries, and the production of ultra-pure water (UPW) in the electronic industry [1-8].  

In the desalination process, seawater is compressed more than its osmotic pressure and only 

water molecules transmit through the membrane [4]. RO processes enable to produce purified 

water, even recycling of nutrients as a form of permeate from municipal wastewater stream 

potentially rich in solids, soluble salts, microorganisms, and dissolved organic compounds [7]. 

In recent years, RO separation technology has been used as the primary technology of UPW 

production operation for removing pollutants from source water [8]. 

By the advancement of different separation technologies as well as RO applications, the 

prediction of this method has a significant role in this scope. Therefore, extensive research has 
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been conducted to provide a developed mathematical model for predicting membrane under 

different conditions [9-19]. 

Among the existing models, the Surface Force-Pore Flow (SF-PF), Modified Surface Force-

Pore Flow (MD-SF-PF), and especially its extended model (Ex- MD-SF-PF) can properly 

model RO membrane functions. In contrast to the proposed complex models, accurate results 

can be obtained by using new algebraic techniques such as a neural network with fewer 

calculations [18-22]. Although these models verified experimental data accurately, due to 

complex differential equations, it needs heavy numerical calculations for obtaining some 

desirable results. For example, a study which was done in 2010 by CFD method that predicts 

RO membrane performances with the square coefficient error between 0.89 to 0.99, this 

technique takes about 40 minutes to model this phenomenon [23]. 

During the last 20 years, Artificial Intelligence methods such as Artificial Neural networks, 

Heuristic algorithms, and Fuzzy methods have been used in all engineering fields. This fact is 

due to their applicability and its simplicity to solve complex nonlinear equations in less time 

than conventional analytical and numerical methods. These methods have been used 

successfully in various problems including the chemical industry. So, these methods as an 

alternative approach could be applied for process modeling, particularly in cases where reliable 

other models cannot be considered. 

Artificial Intelligence techniques were used previously in the RO membrane modeling field, 

most of these studies done with Artificial neural networks [24-36]. Adaptive network-based 

fuzzy Inference System is a new technique which combines Artificial neural network with fuzzy 

logic, so this method is a more powerful technique to model complex phenomena [37]. The 

author in a previous manuscript has an attempt to Predict the RO Model performance parameter, 

at that attempt, a feed-forward artificial neural network was used to construct the model. That 

attempt has good correlation coefficient between experimental data and predicted data, the 

result showed that separation factor (f) was predicted with a correlation square coefficient equal 

to 0.933, Pure solvent flux with a correlation coefficient square equal to 0.996, and total Flux 

with correlation coefficient square equal to 0.996. Also, neural networks could predict this 

parameter accurately, but because of the Adaptive network base, Artificial networks are a 

combination of fuzzy logic and Neural Networks and usually could be predicted complicated 

parameters more accurate than other soft computing models, in this study this technique is used 

to Model RO membrane.  

The main purpose of this paper was to evaluate membrane performances such as separation 

factor (f), pure solvent flux (NP), total flux passing through the membrane by use of adaptive 

network-based fuzzy inference system (ANFIS) and comparing the result with a method which 

is based on CFD method [23]. The results could be obtained through input parameters including 

average longitude concentration, operational condition, and MD-SF-PF model parameters. It 

could be expected that the ANFIS technique should estimate RO membrane performance with 

negligible errors. Therefore, this method can be used to evaluate the RO membranes in both 

industry and laboratory experiments.  

Theory 

Reverse Osmosis 

The direct osmosis process is the spontaneous diffusion of fluid through a permeable membrane 

from the low solute concentration area to the high solute concentration area. The pressure 

difference (osmotic pressure) forces the liquid to diffuse through the membrane. If an external 

pressure applied to reverse more than the osmotic pressure, the pure solvent moves in the 

opposite direction which is called reverse osmosis. In the following step, the molecules of 

http://en.wikipedia.org/wiki/Osmosis
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solvent (water) move from dilute concentration (brackish water) to a higher concentration area. 

As a result, the RO process is the tendency of molecules to diffuse via a semi-permeable 

membrane by acting pressure on the solution. Usually, pure solvent flux (NP) and total flux (NT) 

are measured. The difference between the concentration of input and output solutes is the 

Separation factor (f) and it can be calculated from Eq. 1. Fig. 1 depicts a simplified general 

scheme of the RO membrane separation process [20-22]. 

 
(1) 

 
Fig. 1. General scheme of the RO membrane process. 

The separation factor is defined in Eq. 2 based on the concentration polarization of solute 

near the membrane (CA2) is greater than its bulk concentration (CA1). 

 
(2) 

There are several driving forces involved in separation processes such as the difference in 

concentration, pressure, and electrical. In RO membranes, the main parameters are 

concentration and pressure gradients [20-22].  

MD-SF-PF Model 

In the MD-SF-PF mechanism base model, membrane structure is supposed to have circular 

cross micro-pores. Therefore, the concentration and velocity depend on axial and radial 

directions. The solute-membrane relation is determined by the Sutherland type potential 

function, which changes through the radial orientation of the micropores [19]. The coefficient 

of Friction indicates the hydrodynamic drag on the solute molecules and is measured by the 

proportion of the diffusivity coefficient of solute in solution to diffusivity coefficient within a 

micro-pore [19-22]. 

In the following section, the model parameters (θ1، θ2), and properties of Membrane  /  و 

(Friction constants, RW and XA1 ،XA2,) have been used as input data set. The axial and radial 

coordination directions are presented as follows: 

Where τ is pore length and Rw is wall pore radius. 
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The differential equation indicating the velocity profile across through (α) the membrane 

porous media which is calculated by the following equation. 
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According to the Van’t Hoff’s equation, the osmotic pressure is: 

RTC A)( −+ +=   (12) 

In order to predict the separation coefficient and fluxes parameters in the membrane 

modeling, the presence of concentration is unavoidable and it is estimated from the 

concentration equation. 
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The solute and solvent fluxes are given below: 
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And the total flux is express as: 
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And the pure solvent flux is described as: 

PAN P =  ,    
)/(8

2


wCR

A =   (19) 

The equation for friction parameter b ( )  is given below: 
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The solute-membrane interactions are presented by a potential function (Ф) which is a 

diffusive phenomenon that indicates the applied force on the solute. In the “MD-SF-PF” 

mathematical model the equation can be defined as one dimensional. 
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Fuzzy Systems 

Fuzzy logic (FL) and fuzzy inference systems (FIS) have wide applicability and they are a 

promising approach for analyzing ambiguous, imprecise, or subjective data. A fuzzy inference 

process widely combines fuzzy rules, membership functions, fuzzification, and de-

fuzzification. By using fuzzy inference in optimization problems, it is simple to be understood 

and interpreted ordinary crisp input-output data. Generally, there are two main classes of fuzzy 

inference processes, namely Mamdani and Sugeno FIS, a typical Mamdani FIS system. Sugeno 

type of fuzzy inference consists of fuzzy sets or membership functions in the premise part. A 

FIS has two inputs and two ST rules are usually as follows:  

R1 : if x1  is 𝐴1
1 and x2  is  𝐴2

1 then f1 = p1x1+q1x2+c1 

R2 : if x1  is 𝐴1
2 and x2  is  𝐴2

2 then f2 = p2x1+q2x2+c2 

For modeling complex problems in this study, the first order ST FIS based model is primarily 

used to evaluate the relationships between inputs and outputs [38]. 

ANFIS 

ANFIS is a multi-layer adaptive network-based fuzzy inference system suggested by Jang. An 

ANFIS construct of five layers to perform different node operations to learn and tune 

coefficients of FIS using a hybrid approach. Simply ANFIS combined neural network and fuzzy 

inference systems to do more accurate modeling [37]. Fig. 2 shows a schematic of ANFIS, it 

this System every input is valorized using membership functions, fuzzy inference systems are 

applied (just Sugeno type), some operations like neural networks will be done and then output 

is defuzzified [38]. 

There are several forms to make FIS in ANFIS like subtractive clustering method and grid 

partitioning, also in MATLAB there are four parameters that affect ANFIS including range of 

influence, reject ratio, accept ratio, and squashing factor [3]. 
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Fig. 2. a schematic of ANFIS structure [38]. 

ANFIS-SUB 

Chiu by extending the mountain clustering method proposed the subtractive clustering method 

in order to subtract the optimization process [39,40]. This approach clusters data points based 

on an unsupervised learning method with respect to evaluating the potential of data in the 

feature vector. It is easy to apply for predicting a set of clusters and cluster centers when there 

is not a distinction associated with a given experimental point. The subtractive clustering 

approach presumes that each data point is a potential cluster center and estimates the potential 

function of density-based for each data point. Then the data point with the highest potential is 

selected as the first cluster grid, and the potential of data points nearby the origin grid is 

eliminated. The optimum point with the maximum remaining potential according to the center 

of the next cluster and the potential of point adjacent to the new cluster center is removed. In 

this method, the influential radius is very important for evaluating the number of clusters. The 

radius with a low value generated a higher number of clusters in the data space leading to the 

overestimation of a higher number of rule sets. Therefore, the influential radius is affecting 

clustering data space calculation. The next step is determining fuzzy rules and fuzzy 

membership functions. Then, a simple regression method and linear squares estimation (LSE) 

is used to evaluate the output MF as a result of valid FIS. According to explanation, ANFIS is 

one of the most powerful approaches to learn and refine the premise of fuzzy MF by using a 

combination of the least-squares estimation and backpropagation (BP) learning algorithm 

[39,40]. 

Methodology 

In this study, the ANFIS was construct using MATLAB FUZZY TOOLBOX, and the 

subtractive clustering method was used to generate initial FIS. Predictions were done using data 

of a previous study on the modified surface force-pore flow model, some errors in this operation 

used to evaluate these systems are present here: 

𝑒𝑖 = [𝑃𝑚 − 𝑃𝑒]𝑖 (23) 
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Correlation Coefficient or Pearson Coefficient: 

𝑅 =
∑ [(P𝑚,𝑖 − P𝑚,𝑎𝑣) × (P𝑒,𝑖 − P𝑒,𝑎𝑣)]𝑛

𝑖=1

√∑ [(P𝑚,𝑖 − P𝑚,𝑎𝑣)
2

]𝑛
𝑖=1 × ∑ (P𝑒,𝑖 − P𝑒,𝑎𝑣)

2𝑛
𝑖=1

 
(27) 

Where Pm is the target value and Pe is the value which are predicted by the model. In this case, 

data for train and test were chosen randomly (0.7 of data set for training and 0.3 for testing, 

effective parameters on ANFIS performance (subtractive clustering FIS) which consist of 

squash factor, accept ratio, reject ratios and Range of influence changed in their interval to 

obtain the best accuracy in prediction. Validation of ANFIS performance in this study is 

calculated by mean square error (MSE), correlation coefficient (R), and Absolute average 

percent error (AAPE) which are defined in formulas previously. 

Result and Discussions 

For all of membrane performance parameters, one ANFIS model was constructed, parameters 

which are effective on ANFIS performance were survived to find optimum condition. For all 

cases, it was observed that the squash factor, reject ratio, and accept ratio has no significant 

effect on ANFIS performance, so these parameters regulated as MATLAB default values. But 

for the range of influence parameters was very effective on ANFIS performance. Results 

showed that for all cases better performances achieved in situations when this parameter has a 

value of more than 0.5, as 0.86 for separation factor, 0.91 for net pre flux, and 0.83 for total 

flux. 

Table 1 shows the result of ANFIS when optimum constructing parameters applied to it, this 

table shows that in all cases predictions are very accurate, and R2 for all of them is more than 

0.995 which is very desirable and accurate in comparison with numerical methods. Also, other 

errors have negligible values, so it concluded that ANFIS has modeled the RO membrane 

application accurately. 
Table 1. Result of ANFIS 

MSE R2 APE AAPE RO 

Parameter 

1.1695×e-04 0.9973 2.9374 0.01 f 

4.776×e-06 0.9953 10.93 0.029 Np 

2.0840×e-05 0.9988 13.22 0.0176 Nt 

 
Fig. 3. Comparison among experimental and computed values by ANFIS for separation factor (f) 
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Fig. 3 shows the comparison between the normalized real value of separation factor and 

values predicted by ANFIS. This diagram which is developed for the test data set shows a good 

match between real and predicted values. So, it could be concluded that this model could be 

used to predict this parameter more accurately than numerical methods (R2 = 0.89 for Golnari 

et al.).  

 
Fig. 4. Comparison among experimental and computed values by ANFIS for net pure flux (Np) 

Fig. 4 shows the comparison between the normalized value of real data and values which 

predict for net pure flux by ANFIS, this figure shows a good match too. The value of R2 has the 

almost same value as numerical models, but because the ANFIS model is faster than the 

previous method, so it could be concluded that this model could be better and more useful. 

 
Fig. 5. Comparison among experimental and computed values by ANFIS for total flux (NT) 
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Fig. 5 shows the comparison between the normalized value of real data and values which 

predict by ANFIS for total flux, in this case, a good match exists between real and predicted 

data too. The value of R2, in this case, has more value than the MD-SF-PF model. From the 

above result, it concluded that ANFIS could predict RO membrane performance better or the 

same mathematical models, but this method is very faster than previous models, so it can be 

used as powerful alternative methods to these models. 

Conclusions 

The present study focused on membrane performances such as separation factor (f), pure 

solvent flux (NP), total flux passing through the membrane by use of an adaptive network-based 

fuzzy inference system, and comparing the result with a method which is based on CFD method. 

The results of this study show that the ANFIS enabled to predict the RO membrane 

performances faster and more accurate in comparison with mathematical models. The 

separation with R2 equals to   0.9973, the pure solvent flux R2 equals to 0.9916 and for total flux, 

R2 equals to 0.9975. In all cases, the theoretical data can predict the input data and there is the 

best fit trend between outcomes of models and experimental values. These predicted data have 

more accuracy than mathematical models, Also, this method takes less time than one minute to 

model the RO membrane, which is very fast in comparison with mathematical methods. 

Nomenclature 

  Friction function, dimensionless 

),( zrCA
 Concentration of solute inside a pore, (kmole/m3) 

)(, rJ rA
  Radial component of solute flux through a single pore, (kmole/m2-sec)               

)(, rJ zA
  Axial component of solute flux through a single pore,( kmole/m2-sec) 

l1&l3  Definite integral, dimensionless 

iN  Flux of i through membrane, (kmole/m2-sec) 

f    Theoretical separation, dimensionless 

C  Molar density of solution, (kmole/m3) 

P Hydrostatic pressure, (kPa) 

DAB  Solute diffusivity in free solution, (m2/sec) 

DAM  Solute diffusivity inside the pore, (m2/sec) 

r Cylindrical coordinate normal to the pore wall,( m) 

R Gas constant, (kJ/kmole-K) 

T Temperature, (K) 

)(* k   Ratio of local partition coefficients at the ends of a pore for solute 

)(rU i  Velocity of i inside the pore, (m/sec) 

z Cylindrical coordinate parallel to the pore wall,(m) 

OF Objective function  

RMSD Parameter 

Greek letters 

)(  Velocity defined, dimensionless 

 Parameter defined, dimensionless 

ΔP Pressure drop across the membrane, (kPa) 

ε Fractional pore area of membrane, dimensionless 
  Radial coordinate, dimensionless 

)(b

1
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  Average pore length taking tortuosity into account, (m) 

),(   Potential function, dimensionless     

η Solution viscosity, (kPa-sec) 

θ1 Potential parameter, (m) 

θ2 Potential parameter,dimensionless  

  Parameter defined, dimensionless 

 Axial coordinate, dimensionless 

           Local Staverman (reflection) coefficient at the feed-membrane interface 

 
Local Staverman (reflection) coefficient at permeate-membrane interface 

VA  Partial molar volume of solute (m3/kmole) 

  Parameter    

Subscripts: 

1 feed solution 

2 feed at the membrane interface 

3  permeate solution. 

A solute 

B solvent 

M membrane 

P  pure solvent (pure water) 

T total solution 

W  pore wall 
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