Van der Geer J, Hanraads JA, Lupton RA. The art of writing a scientific article. J. Sci. Commun. 2000;163(2):51-9.
[2] Lu H, Xu M, Gong L, Duan X, Chai JC. Effects of surface roughness in microchannel with passive heat transfer enhancement structures. International Journal of Heat and Mass Transfer. 2020 Feb 1;148:119070.
174 Beigzadeh
[3] Kumar B, Srivastava GP, Kumar M, Patil AK. A review of heat transfer and fluid flow mechanism in heat exchanger tube with inserts. Chemical Engineering and Processing-Process Intensification. 2018 Jan 1;123:126-37.
[4] Beigzadeh R, Ozairy R. Developing predictive models for analysis the heat transfer in sinusoidal wavy channels. Thermal Science and Engineering Progress. 2019 Dec 1;14:100425.
[5] Assael MJ, Antoniadis KD, Wakeham WA, Zhang X. Potential applications of nanofluids for heat transfer. International Journal of Heat and Mass Transfer. 2019 Aug 1;138:597-607.
[6] Yıldız Ç, Arıcı M, Karabay H. Comparison of a theoretical and experimental thermal conductivity model on the heat transfer performance of Al2O3-SiO2/water hybrid-nanofluid. International Journal of Heat and Mass Transfer. 2019 Sep 1;140:598-605.
[7] Bardool R, Bakhtyari A, Esmaeilzadeh F, Wang X. Nanofluid viscosity modeling based on the friction theory. Journal of Molecular Liquids. 2019 Jul 15;286:110923.
[8] Einstein A. A new determination of molecular dimensions. Annual Physics. 1906;19: 289–306.
[9] Brinkman HC. The viscosity of concentrated suspensions and solutions. The Journal of Chemical Physics. 1952 Apr;20(4):571-571.
[10] Lundgren TS. Slow flow through stationary random beds and suspensions of spheres. Journal of fluid mechanics. 1972 Jan;51(2):273-299.
[11] Alawi OA, Sidik NA, Xian HW, Kean TH, Kazi SN. Thermal conductivity and viscosity models of metallic oxides nanofluids. International Journal of Heat and Mass Transfer. 2018 Jan 1;116:1314-25.
[12] Akilu S, Baheta AT, Kadirgama K, Padmanabhan E, Sharma KV. Viscosity, electrical and thermal conductivities of ethylene and propylene glycol-based β-SiC nanofluids. Journal of Molecular Liquids. 2019 Jun 15;284:780-92.
[13] Kavitha R, Kumar PM, A Review on nanofluids thermal properties determination using intelligent techniques or soft computing tools. Int. J. Scientific Res. 2015; 463–465.
[14] Akhgar A, Toghraie D, Sina N, Afrand M. Developing dissimilar artificial neural networks (ANNs) to prediction the thermal conductivity of MWCNT-TiO2/Water-ethylene glycol hybrid nanofluid. Powder Technology. 2019 Oct 1;355:602-10.
[15] Afrand M, Najafabadi KN, Sina N, Safaei MR, Kherbeet AS, Wongwises S, Dahari M. Prediction of dynamic viscosity of a hybrid nano-lubricant by an optimal artificial neural network. International Communications in Heat and Mass Transfer. 2016 Aug 1;76:209-14.
[16] Jang JS. ANFIS: adaptive-network-based fuzzy inference system, IEEE Trans. Syst. Man. Cybern., 1993;23: 665–685.
[17] Beigzadeh R. Estimation of LLE Data for Binary Systems of N-Formylmorpholine with Alkanes Using Artificial Neural Network–Genetic Algorithm (ANN–GA) Model. Chemical Methodologies. 2019 Jan 1;3(1):67-82.
[18] Alarifi IM, Nguyen HM, Naderi Bakhtiyari A, Asadi A. Feasibility of ANFIS-PSO and ANFIS-GA models in predicting thermophysical properties of Al2O3-MWCNT/oil hybrid nanofluid. Materials. 2019 Jan;12(21):3628.
[19] Mehrabi M, Sharifpur M, Meyer JP. Viscosity of nanofluids based on an artificial intelligence model. International Communications in Heat and Mass Transfer. 2013 Apr 1;43:16-21.
[20] Alrashed AA, Gharibdousti MS, Goodarzi M, de Oliveira LR, Safaei MR, Bandarra Filho EP. Effects on thermophysical properties of carbon based nanofluids: experimental data, modelling using regression, ANFIS and ANN. International Journal of Heat and Mass Transfer. 2018 Oct 1;125:920-32.
[21] Toghraie D, Sina N, Jolfaei NA, Hajian M, Afrand M. Designing an Artificial Neural Network (ANN) to predict the viscosity of Silver/Ethylene glycol nanofluid at different temperatures and volume fraction of nanoparticles. Physica A: Statistical Mechanics and its Applications. 2019 Nov 15;534:122142.
[22] Meybodi MK, Naseri S, Shokrollahi A, Daryasafar A. Prediction of viscosity of water-based Al2O3, TiO2, SiO2, and CuO nanofluids using a reliable approach. Chemometrics and Intelligent Laboratory Systems. 2015 Dec 15;149:60-9.
[23] Lahari MC, Sai PS, Narayanaswamy KS, HaseenaBee P, Devaraj S, Sharma KV. Experimental determination of viscosity of Water-Glycerin based Cu nano-fluids. Materials Today: Proceedings. 2019 Jan 1;19:517-20.
Journal of Chemical and Petroleum Engineering 2020, 55(1): 163-175 175
[24] Tong RM. A control engineering review of fuzzy systems. Automatica. 1977 Nov 1;13(6):559-69.
[25] Beigzadeh R, Hajialyani M, Rahimi M. Heat transfer and fluid flow modeling in serpentine microtubes using adaptive neuro-fuzzy approach. Korean Journal of Chemical Engineering. 2016 May 1;33(5):1534-50.
[26] Goldberg DE, Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley Longman Inc. 2000.
[27] Alade IO, Abd Rahman MA, Saleh TA. Modeling and prediction of the specific heat capacity of Al2 O3/water nanofluids using hybrid genetic algorithm/support vector regression model. Nano-Structures & Nano-Objects. 2019 Feb 1;17:103-11.
[28] Batchelor GK. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. Journal of fluid mechanics. 1977 Nov;83(1):97-117.
[29] Chen H, Ding Y, Tan C. Rheological behaviour of nanofluids. New journal of physics. 2007 Oct 9;9(10):367