Hassan A, Lopez-Linares F, Nassar NN, Carbognani-Arambarri L, Pereira-Almao P. Development of a support for a NiO catalyst for selective adsorption and post-adsorption catalytic steam gasification of thermally converted asphaltenes. Catalysis today. 2013 May 30;207:112-8.
[2] Leontaritis KJ. Asphaltene near-well-bore formation damage modeling. Journal of Energy Resources Technology, 2005;127(3):191-200.
[3] Speight JG. Petroleum Asphaltenes-Part 1: Asphaltenes, resins and the structure of petroleum. Oil & gas science and technology. 2004 Sep 1;59(5):467-77.
Mw (g/mol)
T (K)
K
-ΔG (kJ/mol)
-ΔH (kJ/mol)
ΔS (J/mol.K)
R2
800
298
96687.61
28.45
-2.47
103.12
0.9926
313
99709.10
29.96
333
106507.45
32.06
2000
298
241719.04
30.72
-2.47
111.3
0.9926
313
249272.76
32.35
333
268157.06
34.62
4500
298
543867.84
32.73
-2.47
118.06
0.9926
313
560863.71
34.46
333
603353.38
36.86
186 Mirzayi et al.
[4] Mirzayi B, Vafaie-Sefti M, Mousavi-Dehghani SA, Fasih M, Mansoori GA. The effects of asphaltene deposition on unconsolidated porous media properties during miscible natural gas flooding. Petroleum science and technology. 2008 Jan 30;26(2):231-43.
[5] Joshi NB, Mullins OC, Jamaluddin A, Creek J, McFadden J. Asphaltene precipitation from live crude oil. Energy & Fuels. 2001 Jul 18;15(4):979-86.
[6] Yan J, Plancher H, Morrow NR. Wettability changes induced by adsorption of asphaltenes. SPE Production & Facilities. 1997 Nov 1;12(04):259-66.
[7] Ali SI, Lalji SM, Haneef J, Ahsan U, Khan MA, Yousaf N. Estimation of asphaltene adsorption on MgO nanoparticles using ensemble learning. Chemometrics and Intelligent Laboratory Systems. 2021;208:104-220.
[8] Mohammadi M, Sedighi M, Hemati M. Removal of petroleum asphaltenes by improved activity of NiO nanoparticles supported on green AlPO-5 zeolite: Process optimization and adsorption isotherm. Petroleum. 2020 Jun 1;6(2):182-8.
[9] Kubrakova IV, Nabiullina SN, Tyutyunnik OA. Noble metal nanoparticles functionalized by natural asphaltenes as model phases for geochemical research. Mendeleev Communications. 2020 Nov 1;30(6):815-6.
[10] Nassar NN. Asphaltene adsorption onto alumina nanoparticles: kinetics and thermodynamic studies. Energy & Fuels. 2010 Aug 19;24(8):4116-22.
[11] Nassar NN, Hassan A, Pereira-Almao P. Effect of the particle size on asphaltene adsorption and catalytic oxidation onto alumina particles. Energy & Fuels. 2011 Sep 15;25(9):3961-5.
[12] Nassar NN, Hassan A, Carbognani L, Lopez-Linares F, Pereira-Almao P. Iron oxide nanoparticles for rapid adsorption and enhanced catalytic oxidation of thermally cracked asphaltenes. Fuel. 2012 May 1;95:257-62.
[13] Nassar NN, Hassan A, Pereira-Almao P. Metal oxide nanoparticles for asphaltene adsorption and oxidation. Energy & Fuels. 2011 Mar 17;25(3):1017-23.
[14] Mirzayi B, Shayan NN. Adsorption kinetics and catalytic oxidation of asphaltene on synthesized maghemite nanoparticles. Journal of Petroleum Science and Engineering. 2014 Sep 1;121:134-41.
[15] Franco CA, Nassar NN, Montoya T, Ruíz MA, Cortés FB. Influence of asphaltene aggregation on the adsorption and catalytic behavior of nanoparticles. Energy & Fuels. 2015 Mar 19;29(3):1610-21.
[16] Montoya T, Coral D, Franco CA, Nassar NN, Cortés FB. A novel solid–liquid equilibrium model for describing the adsorption of associating asphaltene molecules onto solid surfaces based on the “chemical theory”. Energy & Fuels. 2014 Aug 21;28(8):4963-75.
[17] Nematollahzadeh A, Seraj S, Mirzayi B. Catecholamine coated maghemite nanoparticles for the environmental remediation: Hexavalent chromium ions removal. Chemical Engineering Journal. 2015 Oct 1;277:21-9.
[18] Poinard B, Kamaluddin S, Tan AQ, Neoh KG, Kah JC. Polydopamine coating enhances mucopenetration and cell uptake of nanoparticles. ACS applied materials & interfaces. 2019 Jan 29;11(5):4777-89.
[19] Lei W, Sun C, Jiang T, Gao Y, Yang Y, Zhao Q, Wang S. Polydopamine-coated mesoporous silica nanoparticles for multi-responsive drug delivery and combined chemo-photothermal therapy. Materials Science and Engineering: C. 2019 Dec 1;105:110103.
[20] Sotoma S, Harada Y. Polydopamine coating as a scaffold for ring-opening chemistry to functionalize gold nanoparticles. Langmuir. 2019 Jun 2;35(25):8357-62.
[21] Kanyong P, Krampa FD, Aniweh Y, Awandare GA. Polydopamine-functionalized graphene nanoplatelet smart conducting electrode for bio-sensing applications. Arabian Journal of Chemistry. 2020 Jan 1;13(1):1669-77.
[22] Mirzayi B, Nematollahzadeh A, Firouznia F, Heydari S. Nitrite removal from aqueous solution using surface modified maghemite nanoparticles. Nano. 2014 Feb 10;9(02):1450013.
[23] Mirzayi B, Nematollahzadeh A, Seraj S. Synthesis and characterization of magnetic maghemite/catecholamine core/shell nanoparticles. Powder Technology. 2015 Jan 1;270:185-91.
[24] Wilczak A, Keinath TM. Kinetics of sorption and desorption of copper (II) and lead (II) on activated carbon. Water Environment Research. 1993 May;65(3):238-44.
Journal of Chemical and Petroleum Engineering 2020, 55(1): 177-187 187
[25] Shayan NN, Mirzayi B. Adsorption and removal of asphaltene using synthesized maghemite and hematite nanoparticles. Energy & Fuels. 2015 Mar 19;29(3):1397-406.
[26] Nematollahzadeh A, Babapoor A, Mousavi SM, Nuri A. Nitrobenzene adsorption from aqueous solution onto polythiophene-modified magnetite nanoparticles. Materials Chemistry and Physics. 2021 Apr 1;262:124266.