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Due to high storage capacity, high dissociation enthalpy, and the 

appropriate melting point of gas hydrates, these compounds have the 

potential for many industrial applications. Tetra-n-butylammonium halides 

are molecules that can form semiclathrate hydrates. This manuscript 

employed the Clausius Clapeyron equation to evaluate the dissociation 

enthalpy of methane/nitrogen/carbon dioxide + tetra-n-butylammonium 

chloride (TBAC) semiclathrate hydrates (SCHs). Phase equilibrium data 

are measured in a batch reactor with an effective volume of 460 cc. The data 

of dissociation enthalpy were evaluated in the temperatures of (275.15 to 

304.75) K and the pressures of (0.36 to 10.57) MPa at (0 - 0.36) mass 

fraction of TBAC. The results showed that the utilization of TBAC 

increases the amount of dissociation enthalpy of semiclathrate hydrates per 

mole of the hydrated gas. By increasing the amount of TBAC in the system, 

the quantity of dissociation enthalpy per mole of hydrated gas increased. 

 

Introduction 

Gas hydrates (also called clathrate hydrates) are solid ice-like structures that form from water 

and gas. These compounds are formed when “guest” molecules such as hydrogen sulfide, 

methane, ethane, carbon dioxide, nitrogen, etc. Their shape and size are appropriate and placed 

into the hydrogen bond cavities in the lattice of water molecules (host) through van der Waals 

forces. High pressures and low temperatures are the required thermodynamic conditions to form 

clathrate hydrates [1].  

Structure sI, structure sII, and structure sH are well-known structures of clathrate hydrates  

[2, 3]. Because of the relatively high storage capacity of gas hydrates (filled gas hydrates can 

release about 180 STP volumes of the gas per the unit volume of formed gas hydrate), high 

dissociation/formation enthalpy, and proper melting point, these materials can be used in many 

industries such as the transportation of natural gas [4-7], water desalination industries [8-11], 

gas separation applications [6, 12-14], gas storage industries [15-17], and storage of cold energy 

in air conditioning systems [18-22]. Therefore, finding the hydrate formers with moderate 
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hydrate formation conditions and high dissociation enthalpy is favorable for the 

industrialization of hydrate-based technologies. 

Understanding the phase behaviors and formation/dissociation enthalpies of gas hydrates is 

of great importance for developing hydrate-based technologies. Sun and coworkers calculated 

the formation/dissociation enthalpy of methane hydrates in salt solutions using Clapeyron and 

Clausius-Clapeyron equations [23]. The calculated dissociation enthalpies by the Clapeyron 

equation did not show temperature dependence, while the calculated values obtained by the 

Clausius-Clapeyron equation decreased with the temperature increase [23]. Experimental 

investigations performed by Kang and coworkers on the formation/dissociation enthalpies of 

methane/carbon dioxide hydrates at 273.15 K showed that the dissociation/formation enthalpy 

of these clathrate hydrates are 362.64 kJ/kg and 471.54 kJ/kg, respectively. The measured data 

shows that the amount of the formation/dissociation enthalpies of methane/carbon dioxide 

hydrates is higher than the amount of ice latent melting heat (334 kJ/kg) [24]. 

Recently, the researchers have employed some quaternary ammonium salts as hydrate 

former [25-29]. Tetra-n-butylammonium halides (TBAX) such as tetra-n-butylammonium 

bromide (TBAB), tetra-n-butylammonium chloride (TBAC) or tetra-n-butylammonium 

fluoride (TBAF) are typical guest molecule that can form the semiclathrate hydrates. The 

structure of semiclathrate compounds is different from the well-known structures of gas 

hydrates. In the common gas hydrate structures (sI, sII, and sH), guest molecules occupy the 

cages formed by the host water molecules. While, in semiclathrate hydrate structures, a part of 

the used semiclathrate former (halide ions) participates in the lattice structure of the cages along 

with water molecules. In this type of hydrate, tetra-n-butylammonium cations (TBA-) occupy 

the large cavities and the small cavities can be occupied by appropriate gas molecules such as 

carbon dioxide, nitrogen, and methane [30].  

Deschamps and Dalmazzone measured the formation/dissociation enthalpies of 

nitrogen/carbon dioxide + TBAB semiclathrate hydrates using the under pressure differential 

scanning calorimetry (DSC) method [31]. The results of these researchers showed that the 

formation/dissociation enthalpies of TBAB + gas semiclathrate hydrates increase by increasing 

the pressure [31]. In another study, Sugahara and Machida measured the formation/dissociation 

enthalpy of TBAB semiclathrate hydrates at high pressures [32]. Their experimental results 

showed that the formation/dissociation enthalpy of TBAB·26H2O is about (192 ± 3) J·g–1, and 

this amount is almost constant at the pressures of up to 800 bar [32]. In 2008, Delahaye and 

Fournaison studied the formation/dissociation enthalpies of (carbon dioxide + TBAB) 

semiclathrate hydrates using the differential thermal analysis (DTA) method. They 

experimentally showed that the formation/dissociation enthalpy of formed (carbon dioxide 

+TBAB) double hydrates is about 313.2 kJ kg−1 in the presence of 9 wt% TBAB at the pressure 

of 2 MPa [33].  

The phase behaviors and dissociation enthalpies of SCHs formed in the presence of 

semiclathrate formers are not well known. There are two common methods to obtain the 

formation/dissociation enthalpies of gas hydrates. Calorimetric determination is the first 

method that is a direct method of measurement. and indirect calculation using the. Employing 

the well-known equations such as Clapeyron or Clausius–Clapeyron equations along with phase 

equilibrium data is the second method to obtain the formation/dissociation enthalpies. In this 

research, the formation/dissociation enthalpies of (methane/nitrogen/carbon dioxide + TBAC) 

SCHs are determined by Clausius–Clapeyron equation. 
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Experimental 

Materials and Device 

TBAC with a purity of 0.95 mass fraction was purchased from Merck. The purities and 

suppliers of all materials used in this work are given in Table 1.  

Javidani et al. [34], Mohammadi et al. [35], and Abedi et al. [36] have described the 

experimental device used in this research. Fig. 1 depicts the schematic diagram of the used 

experimental apparatus in this research. The effective volume of the used reactor is 460 cc. The 

reactor is equipped with two ball valves for injecting/discharging the aqueous solution and two 

needle valves to inject/discharge the methane/carbon dioxide/nitrogen. Controlling the 

temperature of the reactor is done by a water/ethylene glycol circulator. The speed of the 

rocking-cell reactor is set at 10 rpm.  

 

Table 1. Purities and suppliers of materials used in this work 

Chemical Name Supplier Purity 

TBACa Merck 0.95 mass fraction 

methane Varian Gas 0.99995 mol fraction 

nitrogen Varian Gas 0.9995 mol fraction 

carbon dioxide Varian Gas 0.999 mol fraction 
a TBAC= tetra n-butyl ammonium chloride 

 

Fig. 1. Schematic illustration of the experimental apparatus 

Procedure 

After washing the inner part of the reactor with distilled water, a PLATINUM® vacuum 

pump is employed to evacuate the air inside the reactor. 100 cc aqueous solutions of TBAC 

with various concentrations ((0 - 0.36) mass) fraction are prepared and injected into the reactor. 

The gas cylinder is connected to the cell, and the desired gas (methane/nitrogen/carbon dioxide) 

is injected into the reactor. Then, the electromotor is tautened on. The agitation of the solution 
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is performed with a rocking-cell speed of 25 rpm. After colling and then heating the solution, 

the equilibrium data is obtained. 

Results and Discussion 

The formation/dissociation enthalpies of gas hydrates / semiclathrate hydrates are a 

significant parameter to consider these compounds as a possible source for storing the energy. 

In the work, the enthalpy of dissociation/formation is obtained by determining the slope of 

Ln(p) vs. 1/T curves using the Clausius - Clapeyron equation [37]. After measuring the 

equilibrium data of TBAC + methane/nitrogen/carbon dioxide semiclathrate hydrates, 

Clausius-Clapeyron equation [37] (Eq. 1) was employed to calculate the dissociation/formation 

enthalpy of double methane/nitrogen/carbon dioxide + TBAC SCHs. 

 
dissHd ln p

d 1/ T z.R




 
(1) 

where ΔHdiss stands for dissociation/formation enthalpy in kJ/mole. p and T, respectively, 

are pressure in MPa and the temperature in kelvin (K). z is the mean value of the compressibility 

factor over the ranges of T and P under study (calculate using Peng-Robinson (PR) equation of 

state [38]) and R is gas constant.  

Figs. 2 to 4 show the Clapeyron p-T phase diagram of semiclathrate hydrate phase 

equilibrium for methane/nitrogen/carbon dioxide + TBAC + water systems. The straight lines 

in these figures demonstrate the best linear fit of the empirical data. As can be seen in these 

figures, the obtained straight lines fitted from experimental data show good agreement with 

experimental data, which validates the assumptions related to the Clausius-Clapeyron equation.  

 

Fig. 2. Clapeyron p-T phase diagram of semiclathrate hydrate phase equilibrium for TBAC + methane + water 

system. The straight lines represent the best linear fit of the experimental data 
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Fig. 3. Clapeyron p-T phase diagram of semiclathrate hydrate phase equilibrium for TBAC + carbon dioxide + 

water system. The straight lines represent the best linear fit of the experimental data 

Calculated mean values of compressibility factor and molar dissociation enthalpies (ΔHdiss) 

of TBAC + methane/nitrogen/carbon dioxide double semiclathrate hydrates (kJ/mol) are 

presented in Table 2. Dissociation enthalpies per mole of hydrated gas are shown in Fig. 5. As 

shown in Table 2 and Fig. 5 the dissociation enthalpy of gas + TBAC double semiclathrate 

hydrate per mol of hydrated gas increases by increasing the mass fraction of TBAC. The higher 

enthalpies of hydrate dissociation in higher mass fractions of TBAC indicate that more energy 

is required to trap the gas molecules inside the cavities at higher TBAC concentrations. 

 

Fig. 4. Clapeyron p-T phase diagram of semiclathrate hydrate phase equilibrium for TBAC + nitrogen + water 

system. The straight lines represent the best linear fit of the experimental data 
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Table 2. Calculated mean values of compressibility factor and molar dissociation enthalpies (ΔHdiss) of TBAC + 

methane/nitrogen/carbon dioxide double semiclathrate hydrates (kJ/molgas) 

Reference z 

ΔHdiss / 

kJ/mol 

gas 

System WTBAX 

   Water + TBAC + Methane  

[39] 0.8595 58.80  0 

[39] 0.8767 161.00  0.05 

[40] 0.9254 168.43  0.1 

[39] 0.8790 184.26  0.15 

[41] 0.9322 202.49  0.2 

[39] 0.8964 238.24  0.22 

[41] 0.9371 315.44  0.3 

[42] 0.9328 337.95  0.34 

   Water + TBAC + Carbon dioxide  

[39] 0.7762 65.33  0 

[43] 0.8555 216.95  0.0434 

[43] 0.8468 276.31  0.0874 

[39] 0.7838 343.01  0.15 

[39] 0.8283 335.32  0.22 

[42] 0.8384 356.92  0.34 

[44] 0.9169 381.52  0.3618 

   Water + TBAC + Nitrogen  

[45] 1.1754 77.78  297.7 

[39] 0.9796 339.44  0.15 

[39] 0.9816 429.98  0.22 

[42] 0.9878 1082.08  0.34 

 

 

 

Fig. 5. Dissociation enthalpy of semiclathrate hydrates for the systems of TBAC + methane/nitrogen/carbon 

dioxide + water versus the mass fraction of TBAC 

The amounts of dissociation/formation enthalpies of gas hydrates in the presence of TBAC 

show that the formed semiclathrate hydrates in the presence of nitrogen have a higher quantity 
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of ΔHdiss in comparison with carbon dioxide and methane. This may be due to the low tendency 

of nitrogen to be trapped in small cavities of formed semiclathrate hydrates. 

Conclusion 

The amounts of dissociation enthalpies of methane/nitrogen/carbon dioxide + TBAC 

semiclathrate hydrates were calculated using the Clausius-Clapeyron equation. The calculated 

dissociation enthalpy of gas + TBAC double semiclathrate hydrate per mol of hydrated gas 

increased by increasing the mass fraction of TBAC. Nitrogen + TBAC semiclathrate hydrates 

had higher dissociation enthalpy per mol of hydrated gas compared to carbon dioxide and 

methane. 
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