[1]
Lykkebo Petersen, K., Heck, N., G Reguero, B., Potts, D., Hovagimian, A., Paytan, A.: Biological and physical effects of brine discharge from the Carlsbad desalination plant and implications for future desalination plant constructions. Water 11(2), 208 (2019). https://doi.org/10.3390/w11020208
[2]
Baum, M.J., Albert, S., Grinham, A., Gibbes, B.: Spatiotemporal influences of open-coastal forcing dynamics on a dense multiport diffuser outfall. Journal of Hydraulic Engineering 145(10), 05019004 (2019). https://doi.org/10.1061/(ASCE)HY.1943-7900.0001622
[3]
Roberts, D.A., Johnston, E.L., Knott, N.A.: Impacts of desalination plant discharges on the marine environment: A critical review of published studies. Water research 44(18), 5117-5128 (2010). https://doi.org/10.1016/j.watres.2010.04.036
[4]
Greenlee, L.F., Lawler, D.F., Freeman, B.D., Marrot, B., Moulin, P.: Reverse osmosis desalination: water sources, technology, and today's challenges. Water research 43(9), 2317-2348 (2009). https://doi.org/10.1016/j.watres.2009.03.010
[5]
Baum, M., Gibbes, B.: Improved understanding of dense jet dynamics to guide management of desalination outfalls. In: Vol. 1 of Proc., MODSIM2017, 22nd Int. Congress on Modelling and Simulation Society of Australia and New Zealand, edited by G. Syme, D. Hatton MacDonald, B. Fulton, and J. Piantadosi, Hobart 2017, pp. 1711-1717. http://dx.doi.org/10.36334/modsim.2017.L11.baum
[6]
Rezaei-DashtArzhandi, M., Sarrafzadeh, M., Goh, P., Lau, W., Ismail, A., Mohamed, M.: Development of novel thin film nanocomposite forward osmosis membranes containing halloysite/graphitic carbon nitride nanoparticles towards enhanced desalination performance. Desalination 447, 18-28 (2018). https://doi.org/10.1016/j.desal.2018.08.003
[7]
Roy, A., Moulik, S., Kamesh, R., Mullick, A.: Modeling in Membranes and Membrane-Based Processes. Newark: John Wiley & Sons, Incorporated, 47-50 (2020). https://doi.org/10.1002/9781119536260
[8]
Jones, E., Qadir, M., van Vliet, M.T., Smakhtin, V., Kang, S.-m.: The state of desalination and brine production: A global outlook. Science of the Total Environment 657, 1343-1356 (2019). https://doi.org/10.1016/j.scitotenv.2018.12.076
[9]
Pramanik, B.K., Shu, L., Jegatheesan, V.: A review of the management and treatment of brine solutions. Environmental Science: Water Research & Technology 3(4), 625-658 (2017). https://doi.org/10.1039/c6ew00339g
[10]
Stefanakis, A.I., Becker, J.A.: A review of emerging contaminants in water: classification, sources, and potential risks. In: Impact of Water Pollution on Human Health and Environmental Sustainability. pp. 55-80. IGI Global, (2016). https://doi.org/10.4018/978-1-4666-9559-7.ch003
[11]
Frank, H., Fussmann, K.E., Rahav, E., Zeev, E.B.: Chronic effects of brine discharge form large-scale seawater reverse osmosis desalination facilities on benthic bacteria. Water research 151, 478-487 (2019).
https://doi.org/10.1016/j.watres.2018.12.046
[12]
Ibrahim, H.D., Eltahir, E.A.: Impact of Brine Discharge from Seawater Desalination Plants on Persian/Arabian Gulf Salinity. Journal of Environmental Engineering 145(12), 04019084 (2019). https://doi.org/10.1061/(asce)ee.1943-7870.0001604
[13]
Gude, G.: Sustainable desalination handbook: plant selection, design and implementation. Butterworth-Heinemann, (2018). https://doi.org/10.1016/b978-0-12-809240-8.00001-0
[14]
Panagopoulos, A., Haralambous, K.-J., Loizidou, M.: Desalination brine disposal methods and treatment technologies-A review. Science of the Total Environment 693, 133545 (2019). https://doi.org/10.1016/j.scitotenv.2019.07.351
[15]
Yan, X., Mohammadian, A.: Numerical modeling of multiple inclined dense jets discharged from moderately spaced ports. Water 11(10), 2077 (2019). https://doi.org/10.3390/w11102077
[16]
Zhang, S., Jiang, B., Law, A.W.-K., Zhao, B.: Large eddy simulations of 45 inclined dense jets. Environmental Fluid Mechanics 16(1), 101-121 (2016). https://doi.org/10.1007/s10652-015-9415-2
[17]
Zeitoun, M., Reid, R., McHilhenny, W., Mitchell, T.: Model studies of outfall system for desalination plants. Research and Development Progress Rep. 804, Office of Saline Water, U.S Washington, DC: Dept. of Interior (1970). https://doi.org/10.4043/1370-ms
[18]
Abessi, O., Roberts, P.J.: Effect of nozzle orientation on dense jets in stagnant environments. Journal of Hydraulic Engineering 141(8), 06015009 (2015). https://doi.org/10.1061/(asce)hy.1943-7900.0001032
[19]
Abessi, O., Roberts, P.J.: Dense jet discharges in shallow water. Journal of Hydraulic Engineering 142(1), 04015033 (2016). https://doi.org/10.1061/(asce)hy.1943-7900.0001057
[20]
Palomar, P., Lara, J., Losada, I., Rodrigo, M., Alvárez, A.: Near field brine discharge modelling part 1: Analysis of commercial tools. Desalination 290, 14-27 (2012). https://doi.org/10.1016/j.desal.2011.11.037
[21]
Palomar, P., Losada, I.J.: Impacts of brine discharge on the marine environment. Modelling as a predictive tool. Desalination, trends and technologies 234 (2011). https://doi.org/10.5772/14880
[22]
Sahlodin, A.M., Sotudeh-Gharebagh, R., Zhu, Y.: Modeling of dispersion near roadways based on the vehicle-induced turbulence concept. Atmospheric Environment 41(1), 92-102 (2007). https://doi.org/10.1016/j.atmosenv.2006.08.004
[23]
Witlox, H.W., Stene, J., Harper, M., Nilsen, S.H.: Modelling of discharge and atmospheric dispersion for carbon dioxide releases including sensitivity analysis for wide range of scenarios. Energy Procedia 4, 2253-2260 (2011). https://doi.org/10.1016/j.egypro.2011.02.114
[24]
Kwak, K.-H., Baik, J.-J.: A CFD modeling study of the impacts of NOx and VOC emissions on reactive pollutant dispersion in and above a street canyon. Atmospheric environment 46, 71-80 (2012). https://doi.org/10.1016/j.atmosenv.2011.10.024
[25]
Gousseau, P., Blocken, B., Stathopoulos, T., Van Heijst, G.: CFD simulation of near-field pollutant dispersion on a high-resolution grid: a case study by LES and RANS for a building group in downtown Montreal. Atmospheric Environment 45(2), 428-438 (2011). https://doi.org/10.1016/j.atmosenv.2010.09.065
[26]
Chow, M.M., Cardoso, S.S.S., Holford, J.M.: Dispersion of Pollutants Discharged into the Ocean: The Interaction of Small- and Large-scale Phenomena. Chemical Engineering Research and Design 82(6), 730-736 (2004). https://doi.org/10.1205/026387604774196019
[27]
Palomar, P., Lara, J., Losada, I.: Near field brine discharge modeling part 2: Validation of commercial tools. Desalination 290, 28-42 (2012). https://doi.org/10.1016/j.desal.2011.10.021
[28]
Vafeiadou, P., Papakonstantis, I., Christodoulou, G.: Numerical simulation of inclined negatively buoyant jets. In: The 9th international conference on environmental science and technology, September 2005, pp. 1-3 https://doi.org/10.1080/00221686.2010.537153
[29]
Oliver, C., Davidson, M., Nokes, R.: k-ε Predictions of the initial mixing of desalination discharges. Environmental Fluid Mechanics 8(5-6), 617 (2008).
https://doi.org/10.1007/s10652-008-9108-1
[30]
Robinson, D., Wood, M., Piggott, M., Gorman, G.: CFD modelling of marine discharge mixing and dispersion. Journal of Applied Water Engineering and Research 4(2), 152-162 (2016). https://doi.org/10.1080/23249676.2015.1105157
[31]
Gildeh, H.K., Mohammadian, A., Nistor, I., Qiblawey, H.: Numerical modeling of 30 and 45∘ inclined dense turbulent jets in stationary ambient. Environmental Fluid Mechanics 15(3), 537-562 (2015). https://doi.org/10.1007/s10652-014-9372-1
[32]
Zhang, S., Law, A.W.-K., Jiang, M.: Large eddy simulations of 45 and 60 inclined dense jets with bottom impact. Journal of hydro-environment research 15, 54-66 (2017). https://doi.org/10.1016/j.jher.2017.02.001
[33]
Jiang, M., Law, A.W.-K., Lai, A.C.: Turbulence characteristics of 45 inclined dense jets. Environmental Fluid Mechanics 19(1), 27-54 (2019). https://doi.org/10.1007/s10652-018-9614-8
[34]
Ardalan, H., Vafaei, F.: CFD and Experimental Study of 45 Inclined Thermal-Saline Reversible Buoyant Jets in Stationary Ambient. Environmental Processes 6(1), 219-239 (2019). https://doi.org/10.1007/s40710-019-00356-z
[35]
Baum, M.J., Gibbes, B.: Field-Scale Numerical Modeling of a Dense Multiport Diffuser Outfall in Crossflow. Journal of Hydraulic Engineering 146(1), 05019006 (2020). https://doi.org/10.1061/(asce)hy.1943-7900.0001635
[36]
Al-Sanea, S., Orfi, J., Najib, A.: Numerical study of flow, temperature, and salinity distributions of a brine discharge problem. Desalination and Water Treatment 55(12), 3218-3230 (2015). https://doi.org/10.1080/19443994.2014.940658
[37]
Ardalan, H., Vafaei, F.: Hydrodynamic classification of submerged Thermal-Saline Inclined Single-Port discharges. Marine Pollution Bulletin 130, 299-306 (2018). https://doi.org/10.1016/j.marpolbul.2018.03.052
[38]
Roberts, P.J., Ferrier, A., Daviero, G.: Mixing in inclined dense jets. Journal of Hydraulic Engineering 123(8), 693-699 (1997). https://doi.org/10.1061/(asce)0733-9429(1997)123:8(693)
[39]
List, E., Koh, R.C., Imberger, J.: Mixing in inland and coastal waters. Academic Press, (1979). https://doi.org/10.1016/c2009-0-22051-4
[40]
Roberts, P.J., Toms, G.: Inclined dense jets in flowing current. Journal of Hydraulic Engineering 113(3), 323-340 (1987). https://doi.org/10.1061/(asce)0733-9429(1987)113:3(323)
[41]
Abessi, O., Roberts, P.J.: Multiport diffusers for dense discharges. Journal of Hydraulic Engineering 140(8), 04014032 (2014). https://doi.org/10.1061/(asce)hy.1943-7900.0000882
[42]
Abessi, O., Roberts, P.J.: Multiport diffusers for dense discharge in flowing ambient water. Journal of Hydraulic Engineering 143(6), 04017003 (2017). https://doi.org/10.1061/(asce)hy.1943-7900.0001279
[43]
Manninen, M., Taivassalo, V., Kallio, S.: On the mixture model for multiphase flow. In. Technical Research Centre of Finland Finland, (1996)
[44]
Xue, W., Huai, W., Qian, Z., Yang, Z., Zeng, Y.: Numerical simulation of initial mixing of marine wastewater discharge from multiport diffusers. Engineering Computations 31(7), 1379-1400 (2014). https://doi.org/10.1108/ec-06-2013-0148
[45]
Schiller, L.: A drag coefficient correlation. Zeit. Ver. Deutsch. Ing. 77, 318-320 (1933).
[46]
Morsi, S., Alexander, A.: An investigation of particle trajectories in two-phase flow systems. Journal of Fluid mechanics 55(2), 193-208 (1972). https://doi.org/10.1017/s0022112072001806
[47]
Fluent, A.: 18.1, Theory Guide, Ansys. In. Inc, (2017)
[48]
Seil, G., Zhang, Q.: CFD modeling of desalination plant brine discharge systems. J. Aust. Water Assoc 37(6), 79-83 (2010).
[49]
Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA journal 32(8), 1598-1605 (1994).
https://doi.org/10.2514/3.12149
[50]
Patankar, S.V.: Numerical heat transfer and fluid flow, Hemisphere Publ. Corp., New York 58 (1980). https://doi.org/10.1002/cite.330530323
[51]
Cipollina, A., Brucato, A., Grisafi, F., Nicosia, S.: Bench-scale investigation of inclined dense jets. Journal of Hydraulic Engineering 131(11), 1017-1022 (2005). https://doi.org/10.1061/(asce)0733-9429(2005)131:11(1017)
[52]
Kikkert, G., Davidson, M., Nokes, R.: Inclined negatively buoyant discharges. Journal of Hydraulic Engineering 133(5), 545-554 (2007). https://doi.org/10.1061/(asce)0733-9429(2007)133:5(545)
[53]
Papakonstantis, I.G., Christodoulou, G.C., Papanicolaou, P.N.: Inclined negatively buoyant jets 2: concentration measurements. Journal of Hydraulic Research 49(1), 13-22 (2011). https://doi.org/10.1080/00221686.2010.542617
[54]
Papakonstantis, I.G., Christodoulou, G.C., Papanicolaou, P.N.: Inclined negatively buoyant jets 1: geometrical characteristics. Journal of Hydraulic Research 49(1), 3-12 (2011). https://doi.org/10.1080/00221686.2010.537153
[55]
Shao, D., Law, A.: Integral modelling of horizontal buoyant jets with asymmetrical cross sections. In: Proceedings of the 7th International Symposium on Environmental Hydraulics 2014
[56]
Dissanayake, A.L., Gros, J., Socolofsky, S.A.: Integral models for bubble, droplet, and multiphase plume dynamics in stratification and crossflow. Environmental Fluid Mechanics 18(5), 1167-1202 (2018).
https://doi.org/10.1007/s10652-018-9591-y