[1] Ratel L, Kuznik F, Johannes K. Open Sorption Systems. In: Cabeza LFBT-E of ES, editor.,
Oxford: Elsevier; 2022, p. 526–41. https://doi.org/10.1016/B978-0-12-819723-3.00120-7.
[2] Mirshafiee F, Karimzadeh R, Khoshbin R. Effect of Textural Properties of Y, ZSM-5 and
Beta Zeolites on Their Catalytic Activity in Catalytic Cracking of a Middle Distillate Cut
Named RCD. J Oil, Gas Petrochemical Technol 2021;8:60–74.
[3] Mäki-Arvela P, Simakova I, Vajglová Z, Kumar N, Murzin DY. Relating extrusion as a
method of bifunctional catalysts synthesis and their catalytic performance. Catal Today
2022. https://doi.org/10.1016/j.cattod.2022.10.015.
[4] Yang K, Zhang D, Zou M, Yu L, Huang S. The Known and Overlooked Sides of ZeoliteExtrudate Catalysts. ChemCatChem 2021; 13:1414–23.
https://doi.org/10.1002/cctc.202001601.
[5] Mendes PSF, Silva JM, Ribeiro MF, Daudin A, Bouchy C. From powder to extrudate
zeolite-based bifunctional hydroisomerization catalysts: on preserving zeolite integrity and
optimizing Pt location. J Ind Eng Chem 2018; 62:72–83.
[6] Bingre R, Louis B, Nguyen P. An Overview on Zeolite Shaping Technology and Solutions
to Overcome Diffusion Limitations. Catalysts 2018;8.
https://doi.org/10.3390/catal8040163.
[7] Devyatkov S, Kuzichkin N V, Murzin DY. On comprehensive understanding of catalyst
shaping by extrusion. Chem Today 2015; 33:57–64.
[8] Mei H, Mei BW, Yen TF. A new method for obtaining ultra-low sulfur diesel fuel via
ultrasound assisted oxidative desulfurization☆. Fuel 2003; 82:405–14.
https://doi.org/10.1016/S0016-2361(02)00318-6.
[9] Asgar Pour Z, Abduljawad MM, Alassmy YA, Cardon L, Van Steenberge PHM, Sebakhy
KO. A Comparative Review of Binder-Containing Extrusion and Alternative Shaping
Techniques for Structuring of Zeolites into Different Geometrical Bodies. Catalysts
2023;13. https://doi.org/10.3390/catal13040656.
[10] Mitchell S, Michels N-L, Pérez-Ramírez J. From powder to technical body: the undervalued
science of catalyst scales up. Chem Soc Rev 2013; 42:6094–112.
https://doi.org/10.1039/C3CS60076A.
[11] Liu B, Zhu X, Zhao J, Wang D, Ma W. A Study into the γ-Al2O3 Binder Influence on
Nano-H-ZSM-5 via Scaled-Up Laboratory Methanol-to-Hydrocarbon Reaction. Catalysts
2021; 11:1140. https://doi.org/10.3390/catal11101140.
[12] Lakiss L, Gilson J-P, Valtchev V, Mintova S, Vicente A, Vimont A, et al. Zeolites in a good
shape: Catalyst forming by extrusion modifies their performances. Microporous
Mesoporous Mater 2020; 299:110114.
[13] Peighambardoust SH, Golshan Tafti A, Hesari J. Application of spray drying for
preservation of lactic acid starter cultures: a review. Trends Food Sci Technol 2011;
22:215–24. https://doi.org/10.1016/j.tifs.2011.01.009.
[14] Freifrau von Seckendorff-Gutend J. Shape Matters-Experimental and Numerical Study on
the Catalyst Carrier’s Geometry and the Utilization of 3d Printing herefor 2021.
[15] Wu D, Tang M. Effects of process factors on extrusion of hierarchically porous ZSM-5
zeolite. Powder Technol 2019; 352:79–90.
[16] Vajglova Z, Kumar N, Maki-Arvela P, Eranen K, Peurla M, Hupa L, et al. Synthesis and
physicochemical characterization of shaped catalysts of β and Y zeolites for cyclization of
citronellal. Ind Eng Chem Res 2019; 58:18084–96.
[17] Ren D, Wang X, Li G, Cheng X, Long H, Chen L. Methane aromatization in the absence of
oxygen over extruded and molded MoO3/ZSM-5 catalysts: Influences of binder and
molding method. J Nat Gas Chem 2010; 19:646–52. https://doi.org/10.1016/S1003-
9953(09)60130-4.
[18] Kim M, Chae H-J, Kim T-W, Jeong K-E, Kim C-U, Jeong S-Y. Attrition resistance and
catalytic performance of spray-dried SAPO-34 catalyst for MTO process: Effect of catalyst
phase and acidic solution. J Ind Eng Chem 2011; 17:621–7.
https://doi.org/10.1016/j.jiec.2011.05.009.
[19] Almeida A, Ribeiro RPPL, Mota JPB, Grande C. Extrusion and characterization of high
Si/Al ratio ZSM-5 using silica binder. Energies 2020; 13:1201.
[20] Kantarelis E, Yang W, Blasiak W. Effect of zeolite to binder ratio on product yields and
composition during catalytic steam pyrolysis of biomass over transition metal modified
HZSM5. Fuel 2014; 122:119–25. https://doi.org/10.1016/j.fuel.2013.12.054.
[21] Pereira A, Ferreira AFP, Rodrigues A, Ribeiro AM, Regufe MJ. Evaluation of the potential
of a 3D-printed hybrid zeolite 13X/activated carbon material for CO2/N2 separation using
electric swing adsorption. Chem Eng J 2022; 450:138197.
https://doi.org/10.1016/j.cej.2022.138197.
[22] Carrasco Saavedra A, Timoshev V, Hauck M, Hassan Nejad M, Dang TT, Vu XH, et al.
Binder Selection to Modify Hydrocarbon Cracking Properties of Zeolite-Containing
Composites. ACS Omega 2022; 7:16430–41. https://doi.org/10.1021/acsomega.2c00446.
[23] Glotov A, Vutolkina A, Artemova M, Demikhova N, Smirnova E, Roldugina E, et al.
Micro-mesoporous MCM-41/ZSM-5 supported Pt and Pd catalysts for hydroisomerization
of C-8 aromatic fraction. Appl Catal A Gen 2020; 603:117764.
https://doi.org/10.1016/j.apcata.2020.117764.
[24] Shams K, Mirmohammadi SJ. Preparation of 5A zeolite monolith granular extrudates using
kaolin: Investigation of the effect of binder on sieving/adsorption properties using a mixture
of linear and branched paraffin hydrocarbons. Microporous Mesoporous Mater 2007;
106:268–77. https://doi.org/10.1016/j.micromeso.2007.03.007.
[25] Buttignol F, Garbujo A, Biasi P, Rentsch D, Kröcher O, Ferri D. Effect of an Al2O3-based
binder on the structure of extruded Fe-ZSM-5. Catal Today 2022; 387:207–15.
https://doi.org/10.1016/j.cattod.2021.09.020.
[26] Aghaei M, Anbia M, Salehi S. Measurements and modeling of CO2 adsorption behaviors
on granular zeolite 13X: Impact of temperature and time of calcination on granules
properties in granulation process using organic binders. Environ Prog Sustain Energy
2022;41: e13866. https://doi.org/10.1002/ep.13866.
[27] Cao J-L, Shao G-S, Wang Y, Liu Y, Yuan Z-Y. CuO catalysts supported on attapulgite clay
for low-temperature CO oxidation. Catal Commun 2008; 9:2555–9.
https://doi.org/10.1016/j.catcom.2008.07.016.
[28] Hargreaves JSJ, Munnoch AL. A survey of the influence of binders in zeolite catalysis.
Catal Sci Technol 2013; 3:1165–71.
[29] Ebrahimi A, Haghighi M, Aghamohammadi S. Effect of calcination temperature and
composition on the spray-dried microencapsulated nanostructured SAPO-34 with kaolin for
methanol conversion to ethylene and propylene in fluidized bed reactor. Microporous
Mesoporous Mater 2020; 297:110046. https://doi.org/10.1016/j.micromeso.2020.110046.
[30] Tian C, Wu D. Mechanical properties of ZSM-5 extruded catalysts: calcination process
optimization using response surface methodology. Chem Eng Commun 2021; 208:1594–
606. https://doi.org/10.1080/00986445.2020.1803295.
[31] Vajglova Z, Kumar N, Maki-Arvela P, Eranen K, Peurla M, Hupa L, et al. Effect of binders
on the physicochemical and catalytic properties of extrudate-shaped Beta zeolite catalysts
for cyclization of citronellal. Org Process Res Dev 2019; 23:2456–63.
[32] Whitney D. 2.18 - Ceramic Cutting Tools. In: Sarin VKBT-CHM, editor., Oxford: Elsevier;
2014, p. 491–505. https://doi.org/10.1016/B978-0-08-096527-7.00037-4.
[33] Motawie AM, Madany MM, El-Dakrory AZ, Osman HM, Ismail EA, Badr MM, et al.
Physico-chemical characteristics of nano-organo bentonite prepared using different organomodifiers. Egypt J Pet 2014; 23:331–8.
https://doi.org/10.1016/j.ejpe.2014.08.009.
[34] Sperinck S, Raiteri P, Marks N, Wright K. Dehydroxylation of Kaolinite to Metakaolin - A
Molecular Dynamics Study. vol. 21. 2011. https://doi.org/10.1039/C0JM01748E.
[35] Etim UJ, Bai P, Wang Y, Subhan F, Liu Y, Yan Z. Mechanistic insights into structural and
surface variations in Y-type zeolites upon interaction with binders. Appl Catal A Gen 2019;
571:137–49.
[36] Wang B, Li N, Zhang Q, Li C, Yang C, Shan H. Studies on the preliminary cracking: The
reasons why matrix catalytic function is indispensable for the catalytic cracking of feed with
large molecular size. J Energy Chem 2016; 25:641–53.
[37] Du X, Kong X, Chen L. Influence of binder on catalytic performance of Ni/HZSM-5 for
hydrodeoxygenation of cyclohexanone. Catal Commun 2014; 45:109–13.
https://doi.org/10.1016/j.catcom.2013.10.042.
[38] Kim SD, Chan Baek S, Lee Y-J, Jun K-W, Jun Kim M, Sang Yoo I. Effect of ??-alumina
content on catalytic performance of modified ZSM-5 for dehydration of crude methanol to
dimethyl ether. vol. 309. 2006. https://doi.org/10.1016/j.apcata.2006.05.008.
[39] Batool SR, Sushkevich VL, van Bokhoven JA. Correlating Lewis acid activity to extraframework aluminum species in zeolite Y introduced by Ion-exchange. J Catal 2022;
408:24–35. https://doi.org/10.1016/j.jcat.2022.02.010.
[40] Dorado F, Romero R, Cañizares P. Hydroisomerization of n-butane over Pd/HZSM-5 and
Pd/Hβ with and without binder. Appl Catal A Gen 2002; 236:235–43.
https://doi.org/10.1016/S0926-860X(02)00295-8.
[41] Zhou S, Zhang C, Li Y, Luo Y, Shu X. Effect of Particle Size of Al2O3 Binders on Acidity
and Isobutane–Butene Alkylation Performance of Zeolite Y-Based Catalysts. Ind Eng
Chem Res 2020; 59:5576–82.
[42] Duan Y, Zhou Y, Sheng X, Zhang Y, Zhou S, Zhang Z. Influence of alumina binder content
on catalytic properties of PtSnNa/AlSBA-15 catalysts. Microporous Mesoporous Mater
2012; 161:33–9. https://doi.org/10.1016/j.micromeso.2012.05.016.
[43] Buttignol F, Garbujo A, Biasi P, Rentsch D, Kröcher O, Ferri D. Effect of an Al2O3-based
binder on the structure of extruded Fe-ZSM-5. Catal Today 2021;387.
https://doi.org/10.1016/j.cattod.2021.09.020.
[44] Hubesch RC. Investigation of binder modified zeolites for the catalytic cracking of
endothermic fuels 2021.
[45] Bertolini TCR, Fungaro DA, Mahmoud AED. The influence of separately and combined
bentonite and kaolinite as binders for pelletization of NaA zeolite from coal fly ash.
Cerâmica 2022; 68:375–84.
[46] Honda K, Chen X, Zhang ZG. Preparation of highly active binder-added MoO3/HZSM-5
catalyst for the non-oxidative dehydroaromatization of methane. Appl Catal A Gen 2008;
351:122–30. https://doi.org/10.1016/j.apcata.2008.09.005.
[47] Beheshti MS, Behzad M, Ahmadpour J, Arabi H. Modification of H-[B]-ZSM-5 zeolite for
methanol to propylene (MTP) conversion: Investigation of extrusion and steaming
treatments on physicochemical characteristics and catalytic performance. Microporous
Mesoporous Mater 2020; 291:109699.
[48] Huang S, Liu H, Zhang L, Liu S, Xin W, Li X, et al. Effects of acid leaching post-treatment
on the catalytic performance of MoO3/mordenite-alumina catalysts for 1-butene metathesis
reaction. Appl Catal A Gen 2011; 404:113–9. https://doi.org/10.1016/j.apcata.2011.07.020.
[49] Song W, Xiong G, Long H, Jin F, Liu L, Wang X. Effect of treatment with different bases
on the catalytic properties of TS-1/SiO2 extrudates in propylene epoxidation. Microporous
Mesoporous Mater 2015; 212:48–55. https://doi.org/10.1016/j.micromeso.2015.03.026.
[50] Song W, Zuo Y, Xiong G, Zhang X, Jin F, Liu L, et al. Transformation of SiO2 in Titanium
Silicalite-1/SiO2 extrudates during tetrapropylammonium hydroxide treatment and
improvement of catalytic properties for propylene epoxidation. Chem Eng J 2014; 253:464–
71. https://doi.org/10.1016/j.cej.2014.05.075.
[51] Klimov O V, Vatutina Y V, Nadeina KA, Kazakov MO, Gerasimov EY, Prosvirin IP, et al.
CoMoB/Al2O3 catalysts for hydrotreating of diesel fuel. The effect of the way of the boron addition to a support or an impregnating solution. Catal Today 2018; 305:192–202.
https://doi.org/10.1016/j.cattod.2017.07.004.
[52] Zhang S, Gong Y, Zhang L, Liu Y, Dou T, Xu J, et al. Hydrothermal treatment on ZSM-5
extrudates catalyst for methanol to propylene reaction: Finely tuning the acidic property.
Fuel Process Technol 2015; 129:130–8. https://doi.org/10.1016/j.fuproc.2014.09.006.
[53] Li X, Wang C, Liu S, Xin W, Wang Y, Xie S, et al. Influences of alkaline treatment on the
structure and catalytic performances of ZSM-5/ZSM-11 zeolites with alumina as binder. J
Mol Catal A Chem 2011; 336:34–41. https://doi.org/10.1016/j.molcata.2010.12.007.
[54] Gao X, Tang Z, Lu G, Zhang H, Wang B. Application of new porous binder material in
fluid catalytic cracking reaction. J Ind Eng Chem 2012; 18:591–3.
https://doi.org/10.1016/j.jiec.2011.10.008.
[55] Lee Y-J, Kim Y-W, Viswanadham N, Jun K-W, Bae JW. Novel aluminophosphate (AlPO)
bound ZSM-5 extrudates with improved catalytic properties for methanol to propylene
(MTP) reaction. Appl Catal A Gen 2010; 374:18–25.
https://doi.org/10.1016/j.apcata.2009.11.019.