[1] Jensen VB, Darby JL, Seidel C, Gorman C. Nitrate in potable water supplies: alternative
management strategies. Critical Reviews in Environmental Science and Technology.
2014;44(20):2203-86. https://doi.org/10.1080/10643389.2013.828272
[2] Kancherla R, Kumar VR, Prabhaker Reddy G, Sridhar S. Nitrate removal studies on
polyurea membrane using nanofiltration system–membrane characterization and model
development. Chemical Product and Process Modeling. 2020;17(1):81-99.
https://doi.org/10.1515/cppm-2020-0041
[3] Maheswari P, Sheik AG, Tejaswini E, Ambati SR. Nested control loop configuration for a
three-stage biological wastewater treatment process. Chemical Product and Process
Modeling. 2020;16(2):87-100. https://doi.org/10.1515/cppm-2020-0035
[4] Tejaswini E, Uday Bhaskar Babu G, Seshagiri Rao A. Effect of temperature on effluent
quality in a biological wastewater treatment process. Chemical Product and Process
Modeling. 2019;15(1):20190018. https://doi.org/10.1515/cppm-2019-0018
[5] Rajab Beigy M, Rasekh B, Yazdian F, Aminzadeh B, Shekarriz M. High nitrate removal by
starch‐stabilized Fe0 nanoparticles in aqueous solution in a controlled system. Engineering
in Life Sciences. 2018;18(3):187-95. https://doi.org/10.1002/elsc.201700127
[6] Rajab Beiki M, Yazdian F, Rasekh B, Rashedi H, Darzian Rostami A. Effect of metal
nanoparticles on biological denitrification process: a review. Journal of Applied
Biotechnology Reports. 2016;3(1):353-8.
[7] Rezvani F, Sarrafzadeh M-H, Ebrahimi S, Oh H-M. Nitrate removal from drinking water
with a focus on biological methods: a review. Environmental Science and Pollution
Research. 2019; 26:1124-41.
[8] Sharma SK, Sobti RC. Nitrate removal from ground water: a review. E-Journal of
Chemistry. 2012;9(4):1667-75. https://doi.org/10.1155/2012/154616
[9] Ashok V, Hait S. Remediation of nitrate-contaminated water by solid-phase denitrification
process—a review. Environmental Science and Pollution Research. 2015; 22:8075-93.
https://doi.org/10.1007/s11356-015-4334-9
[10] Sierra-Alvarez R, Beristain-Cardoso R, Salazar M, Gómez J, Razo-Flores E, Field JA.
Chemolithotrophic denitrification with elemental sulfur for groundwater treatment. Water
research. 2007;41(6):1253-62. https://doi.org/10.1016/j.watres.2006.12.039
[11] Zhang Z, Lei Z, He X, Zhang Z, Yang Y, Sugiura N. Nitrate removal by Thiobacillus
denitrificans immobilized on poly (vinyl alcohol) carriers. Journal of Hazardous Materials.
2009;163(2-3):1090-5. https://doi.org/10.1016/j.jhazmat.2008.07.062
[12] Zhang R-C, Chen C, Xu X-J, Lee D-J, Ren N-Q. The interaction between Pseudomonas
C27 and Thiobacillus denitrificans in the integrated autotrophic and heterotrophic
denitrification process. Science of the Total Environment. 2022; 811:152360.
https://doi.org/10.1016/j.scitotenv.2021.152360
[13] Polizzi C, Gabriel D, Munz G. Successful sulphide-driven partial denitrification: Efficiency,
stability and resilience in SRT-controlled conditions. Chemosphere. 2022; 295:133936.
https://doi.org/10.1016/j.chemosphere.2022.133936
[14] Han J, Qi X, Liang P. Improved sulfur autotrophic denitrification using supplementary
bovine serum albumin. Science of The Total Environment. 2023; 859:160147.
https://doi.org/10.1016/j.scitotenv.2022.160147
[15] Koenig A, Liu L. Autotrophic denitrification of landfill leachate using elemental Sulphur.
Water Science and Technology. 1996;34(5-6):469-76.
https://doi.org/10.1016/0273-1223(96)00680-4
[16] Koenig A, Liu L. Kinetic model of autotrophic denitrification in Sulphur packed-bed
reactors. Water research. 2001;35(8):1969-78.
https://doi.org/10.1016/S0043-1354(00)00483-8
[17] Zhang TC, Lampe DG. Sulfur: limestone autotrophic denitrification processes for treatment
of nitrate-contaminated water: batch experiments. Water Research. 1999;33(3):599-608.
https://doi.org/10.1016/S0043-1354(98)00281-4
[18] Wang H, Qu J. Combined bio electrochemical and sulfur autotrophic denitrification for
drinking water treatment. Water Research. 2003;37(15):3767-75.
https://doi.org/10.1016/S0043-1354(03)00249-5
[19] Flere JM, Zhang TC. Nitrate removal with sulfur-limestone autotrophic denitrification
processes. Journal of Environmental Engineering. 1999;125(8):721-9.
https://doi.org/10.1061/(ASCE)0733-9372(1999)125:8(721)
[20] Wallenstein MD, McNulty S, Fernandez IJ, Boggs J, Schlesinger WH. Nitrogen fertilization
decreases forest soil fungal and bacterial biomass in three long-term experiments. Forest
Ecology and Management. 2006;222(1-3):459-68.
https://doi.org/10.1016/j.foreco.2005.11.002
[21] Chen Y, Su Y, Zheng X, Chen H, Yang H. Alumina nanoparticles-induced effects on
wastewater nitrogen and phosphorus removal after short-term and long-term exposure.
Water research. 2012;46(14):4379-86. https://doi.org/10.1016/j.watres.2012.05.042
[22] Kurt M, Dunn I, Bourne J. Biological denitrification of drinking water using autotrophic
organisms with H2 in a fluidized‐bed biofilm reactor. Biotechnology and bioengineering.
1987;29(4):493-501. https://doi.org/10.1002/bit.260290414
[23] Montalvo S, Guerrero L, Borja R, Sánchez E, Milán Z, Cortés I, et al. Application of natural
zeolites in anaerobic digestion processes: A review. Applied Clay Science. 2012; 58:125-
33. https://doi.org/10.1016/j.clay.2012.01.013
[24] Chu L, Wang J. Denitrification performance and biofilm characteristics using biodegradable
polymers PCL as carriers and carbon source. Chemosphere. 2013;91(9):1310-6.
https://doi.org/10.1016/j.chemosphere.2013.02.064
[7] Rezvani F, Sarrafzadeh M-H, Ebrahimi S, Oh H-M. Nitrate removal from drinking water
with a focus on biological methods: a review. Environmental Science and Pollution
Research. 2019; 26:1124-41.
[8] Sharma SK, Sobti RC. Nitrate removal from ground water: a review. E-Journal of
Chemistry. 2012;9(4):1667-75. https://doi.org/10.1155/2012/154616
[9] Ashok V, Hait S. Remediation of nitrate-contaminated water by solid-phase denitrification
process—a review. Environmental Science and Pollution Research. 2015; 22:8075-93.
https://doi.org/10.1007/s11356-015-4334-9
[10] Sierra-Alvarez R, Beristain-Cardoso R, Salazar M, Gómez J, Razo-Flores E, Field JA.
Chemolithotrophic denitrification with elemental sulfur for groundwater treatment. Water
research. 2007;41(6):1253-62. https://doi.org/10.1016/j.watres.2006.12.039
[11] Zhang Z, Lei Z, He X, Zhang Z, Yang Y, Sugiura N. Nitrate removal by Thiobacillus
denitrificans immobilized on poly (vinyl alcohol) carriers. Journal of Hazardous Materials.
2009;163(2-3):1090-5. https://doi.org/10.1016/j.jhazmat.2008.07.062
[12] Zhang R-C, Chen C, Xu X-J, Lee D-J, Ren N-Q. The interaction between Pseudomonas
C27 and Thiobacillus denitrificans in the integrated autotrophic and heterotrophic
denitrification process. Science of the Total Environment. 2022; 811:152360.
https://doi.org/10.1016/j.scitotenv.2021.152360
[13] Polizzi C, Gabriel D, Munz G. Successful sulphide-driven partial denitrification: Efficiency,
stability and resilience in SRT-controlled conditions. Chemosphere. 2022; 295:133936.
https://doi.org/10.1016/j.chemosphere.2022.133936
[14] Han J, Qi X, Liang P. Improved sulfur autotrophic denitrification using supplementary
bovine serum albumin. Science of The Total Environment. 2023; 859:160147.
https://doi.org/10.1016/j.scitotenv.2022.160147
[15] Koenig A, Liu L. Autotrophic denitrification of landfill leachate using elemental Sulphur.
Water Science and Technology. 1996;34(5-6):469-76.
https://doi.org/10.1016/0273-1223(96)00680-4
[16] Koenig A, Liu L. Kinetic model of autotrophic denitrification in Sulphur packed-bed
reactors. Water research. 2001;35(8):1969-78.
https://doi.org/10.1016/S0043-1354(00)00483-8
[17] Zhang TC, Lampe DG. Sulfur: limestone autotrophic denitrification processes for treatment
of nitrate-contaminated water: batch experiments. Water Research. 1999;33(3):599-608.
https://doi.org/10.1016/S0043-1354(98)00281-4
[18] Wang H, Qu J. Combined bio electrochemical and sulfur autotrophic denitrification for
drinking water treatment. Water Research. 2003;37(15):3767-75.
https://doi.org/10.1016/S0043-1354(03)00249-5
[19] Flere JM, Zhang TC. Nitrate removal with sulfur-limestone autotrophic denitrification
processes. Journal of Environmental Engineering. 1999;125(8):721-9.
https://doi.org/10.1061/(ASCE)0733-9372(1999)125:8(721)
[20] Wallenstein MD, McNulty S, Fernandez IJ, Boggs J, Schlesinger WH. Nitrogen fertilization
decreases forest soil fungal and bacterial biomass in three long-term experiments. Forest
Ecology and Management. 2006;222(1-3):459-68.
https://doi.org/10.1016/j.foreco.2005.11.002
[21] Chen Y, Su Y, Zheng X, Chen H, Yang H. Alumina nanoparticles-induced effects on
wastewater nitrogen and phosphorus removal after short-term and long-term exposure.
Water research. 2012;46(14):4379-86. https://doi.org/10.1016/j.watres.2012.05.042
[22] Kurt M, Dunn I, Bourne J. Biological denitrification of drinking water using autotrophic
organisms with H2 in a fluidized‐bed biofilm reactor. Biotechnology and bioengineering.
1987;29(4):493-501. https://doi.org/10.1002/bit.260290414
[23] Montalvo S, Guerrero L, Borja R, Sánchez E, Milán Z, Cortés I, et al. Application of natural
zeolites in anaerobic digestion processes: A review. Applied Clay Science. 2012; 58:125-
33. https://doi.org/10.1016/j.clay.2012.01.013
[24] Chu L, Wang J. Denitrification performance and biofilm characteristics using biodegradable
polymers PCL as carriers and carbon source. Chemosphere. 2013;91(9):1310-6.
https://doi.org/10.1016/j.chemosphere.2013.02.064
[25] Yamashita T, Yamamoto-Ikemoto R, Zhu J. Sulfate-reducing bacteria in a denitrification
reactor packed with wood as a carbon source. Bioresource Technology. 2011;102(3):2235-
41. https://doi.org/10.1016/j.biortech.2010.10.015
[26] Moreno-Castilla C, Bautista-Toledo I, Ferro-Garcıa M, Rivera-Utrilla J. Influence of
support surface properties on activity of bacteria immobilised on activated carbons for water
denitrification. Carbon. 2003;41(9):1743-9.
https://doi.org/10.1016/S0008-6223(03)00123-4
[27] Soy E, Pyeshkova V, Arkhypova V, Khadro B, Jaffrezic-Renault N, Sacco Jr A, et al.
Potentialities of zeolites for immobilization of enzymes in conductometric biosensors.
Сенсорна електроніка і мікросистемні технології. 2010;7(1):28-35.
https://doi.org/10.18524/1815-7459.2010.1.114008
[28] Bautista-Toledo M, Espinosa-Iglesias D, Carrasco-Marín F, Pérez-Cadenas A, MaldonadoHódar F. Influence of the physicochemical properties of inorganic supports on the activity
of immobilized bacteria for water denitrification. Journal of Environmental Management.
2015; 156:81-8. https://doi.org/10.1016/j.jenvman.2015.03.031
[29] Philippot L. Denitrifying genes in bacterial and archaeal genomes. Biochimica et biophysica
acta (BBA)-Gene structure and expression. 2002;1577(3):355-76.
https://doi.org/10.1016/S0167-4781(02)00420-7
[30] Di Capua F, Papirio S, Lens PN, Esposito G. Chemolithotrophic denitrification in biofilm
reactors. Chemical Engineering Journal. 2015; 280:643-57.
https://doi.org/10.1016/j.cej.2015.05.131
[31] Abyaneh EZ, Zarghami R, Krühne U, Grundtvig IPR, Ramin P, Mostoufi N. Mixing
assessment of an industrial anaerobic digestion reactor using CFD. Renewable Energy.
2022; 192:537-49. https://doi.org/10.1016/j.renene.2022.04.147
[32] Park J-H, Shin H-S, Lee I-S, Bae J-H. Denitrification of high NO3−-N containing
wastewater using elemental sulfur; nitrogen loading rate and N2O production.
Environmental technology. 2002;23(1):53-65.
https://doi.org/10.1080/09593332508618431
[33] Zhao Y, Feng C, Wang Q, Yang Y, Zhang Z, Sugiura N. Nitrate removal from groundwater
by cooperating heterotrophic with autotrophic denitrification in a biofilm–electrode reactor.
Journal of hazardous materials. 2011;192(3):1033-9.
https://doi.org/10.1016/j.jhazmat.2011.06.008
[34] Wan D, Liu H, Qu J, Lei P, Xiao S, Hou Y. Using the combined bioelectrochemical and
sulfur autotrophic denitrification system for groundwater denitrification. Bioresource
technology. 2009;100(1):142-8. https://doi.org/10.1016/j.biortech.2008.05.042
[35] Torrentó C, Cama J, Urmeneta J, Otero N, Soler A. Denitrification of groundwater with
pyrite and Thiobacillus denitrificans. Chemical Geology. 2010;278(1-2):80-91.
https://doi.org/10.1016/j.chemgeo.2010.09.003
[36] Carrera J, Vicent T, Lafuente F. Influence of temperature on denitrification of an industrial
high-strength nitrogen wastewater in a two-sludge system. Water Sa. 2003;29(1):11-6.
https://doi.org/10.4314/wsa.v29i1.4939
[37] Gu J-D, Qiu W, Koenig A, Fan Y. Removal of high NO3Ð concentrations in saline water
through autotrophic denitrification by the bacterium Thiobacillus denitrificans strain MP.
Water Science and Technology. 2004;49(5-6):105-12.
https://doi.org/10.2166/wst.2004.0743
[38] Shirazi L, Jamshidi E, Ghasemi M. The effect of Si/Al ratio of ZSM‐5 zeolite on its
morphology, acidity and crystal size. Crystal Research and Technology: Journal of
Experimental and Industrial Crystallography. 2008;43(12):1300-6.
https://doi.org/10.1002/crat.200800149
[39] Koenig A, Liu L. Use of limestone for pH control in autotrophic denitrification: continuous
flow experiments in pilot-scale packed bed reactors. Journal of Biotechnology.
2002;99(2):161-71.
https://doi.org/10.1016/S0168-1656(02)00183-9
[40] Sahinkaya E, Kilic A, Duygulu B. Pilot and full-scale applications of sulfur-based
autotrophic denitrification process for nitrate removal from activated sludge process
effluent. Water Research. 2014; 60:210-7. https://doi.org/10.1016/j.watres.2014.04.052
[41] Kopec L, Kopec A, Drewnowski J. The application of Monod equation to denitrification
kinetics description in the moving bed biofilm reactor (MBBR). International Journal of
Environmental Science and Technology. 2019; 16:1479-86.
https://doi.org/10.1007/s13762-018-1829-1
[42] Rezvani F, Sarrafzadeh M-H. Autotrophic granulation of hydrogen consumer denitrifiers
and microalgae for nitrate removal from drinking water resources at different hydraulic
retention times. Journal of Environmental Management. 2020; 268:110674.
https://doi.org/10.1016/j.jenvman.2020.110674