[2] Andersen HC. Molecular dynamics simulations at constant pressure and/or temperature. The Journal of chemical physics. 1980 Feb 15;72(4):2384-93. DOI:
https://doi.org/10.1063/1.439486.
[3] Nosé, S., A unified formulation of the constant temperature molecular dynamics methods. The Journal of Chemical Physics, 1984.
81(1): p. 511-519. DOI:
https://doi.org/10.1063/1.447334.
[4] van Gunsteren WF, Mark AE. Validation of molecular dynamics simulation. The Journal of chemical physics. 1998 Apr 15;108(15):6109-16. DOI:
https://doi.org/10.1063/1.476021.
[5] Moradi H, Azizpour H, Bahmanyar H, Rezamandi N, Zahedi P. Effect of Si/Al ratio in the faujasite structure on adsorption of methane and nitrogen: a molecular dynamics study. Chemical Engineering & Technology. 2021 Jul;44(7):1221-6. DOI:
https://doi.org/10.1002/ceat.202000356.
[6] Moradi H, Azizpour H, Bahmanyar H, Mohammadi M. Molecular dynamics simulation of H2S adsorption behavior on the surface of activated carbon. Inorganic Chemistry Communications. 2020 Aug 1;118:108048. DOI:
https://doi.org/10.1016/j.inoche.2020.108048.
[7] Emamian M, Azizpour H, Moradi H, Keynejad K, Bahmanyar H, Nasrollahi Z. Performance of molecular dynamics simulation for predicting of solvation free energy of neutral solutes in methanol. Chemical Product and Process Modeling. 2022 Oct 27;17(5):489-97. DOI:
http://dx.doi.org/10.1515/cppm-2021-0014.
[8] Moradi H, Azizpour H, Bahmanyar H, Mohammadi M, Akbari M. Prediction of methane diffusion coefficient in water using molecular dynamics simulation. Heliyon. 2020 Nov 1;6(11). DOI:
https://doi.org/10.1016/j.heliyon.2020.e05385.
[9] Jafari L, Moradi H, Tavan Y. A theoretical and industrial study of component co-adsorption on 3A zeolite: an industrial case. Chemical Papers. 2020 Feb;74(2):651-61. DOI:
http://dx.doi.org/10.1007/s11696-019-00910-x.
[11] Alejandre J, Tildesley DJ, Chapela GA. Molecular dynamics simulation of the orthobaric densities and surface tension of water. The Journal of chemical physics. 1995 Mar 15;102(11):4574-83. DOI:
http://dx.doi.org/10.1063/1.469505.
[14] Schmidt J, VandeVondele J, Kuo IF, Sebastiani D, Siepmann JI, Hutter J, Mundy CJ. Isobaric− isothermal molecular dynamics simulations utilizing density functional theory: an assessment of the structure and density of water at near-ambient conditions. The Journal of Physical Chemistry B. 2009 Sep 3;113(35):11959-64. DOI:
https://doi.org/10.1021/jp901990u.
[15] Cerezo J, Aranda D, Avila Ferrer FJ, Prampolini G, Santoro F. Adiabatic-molecular dynamics generalized vertical hessian approach: a mixed quantum classical method to compute electronic spectra of flexible molecules in the condensed phase. Journal of Chemical Theory and Computation. 2019 Dec 19;16(2):1215-31. DOI:
https://doi.org/10.1021/acs.jctc.9b01009.
[16] Grimme S, Bannwarth C, Caldeweyher E, Pisarek J, Hansen A. A general intermolecular force field based on tight-binding quantum chemical calculations. The Journal of Chemical Physics. 2017 Oct 28;147(16). DOI:
https://doi.org/10.1063/1.4991798.
[17] Grimme S. A general quantum mechanically derived force field (QMDFF) for molecules and condensed phase simulations. Journal of chemical theory and computation. 2014 Oct 14;10(10):4497-514. DOI:
http://dx.doi.org/10.1021/ct500573f.
[18] Zhang C, Bell D, Harger M, Ren P. Polarizable multipole-based force field for aromatic molecules and nucleobases. Journal of chemical theory and computation. 2017 Feb 14;13(2):666-78. DOI:
https://doi.org/10.1021/acs.jctc.6b00918.
[19] Giese TJ, York DM. Quantum mechanical force fields for condensed phase molecular simulations. Journal of Physics: Condensed Matter. 2017 Aug 17;29(38):383002. DOI:
https://doi.org/10.1088/1361-648x/aa7c5c.
[20] Harrison JA, Schall JD, Maskey S, Mikulski PT, Knippenberg MT, Morrow BH. Review of force fields and intermolecular potentials used in atomistic computational materials research. Applied Physics Reviews. 2018 Sep 1;5(3). DOI:
http://dx.doi.org/10.1063/1.5020808.
[21] Wang J, Hou T. Application of molecular dynamics simulations in molecular property prediction. 1. density and heat of vaporization. Journal of chemical theory and computation. 2011 Jul 12;7(7):2151-65. DOI:
https://doi.org/10.1021/ct200142z.
[22] Brüsewitz M, Weiss A. Pressure‐Temperature‐Dependence of Mass Density and Self‐Diffusion Coefficients in the Binary Liquid System n‐Hexane/Benzene. Berichte der Bunsengesellschaft für physikalische Chemie. 1990 Mar;94(3):386-91. DOI:
https://doi.org/10.1002/bbpc.19900940337.