Evaluation of Temperature Effect on Benzene Density Using Molecular Dynamics Simulation

Document Type : Research Paper

Authors

Fouman Faculty of Engineering, University of Tehran, Tehran, Iran.

Abstract

In this study, molecular dynamics simulation has been conducted to model the density of pure benzene at a 256.55-368.16 K temperature range and atmospheric pressure. All the simulations have been performed using BIOVIA Materials Studio 2017 software. The effects of various parameters on benzene density have been investigated, including the number of cell molecules (i.e., cell dimension), force field, and the initial cell density. Ewald and Atom-Based methods have been employed in the simulations to consider the electrostatic and van der Waals interactions. The molecular dynamics results were compared with the experimental data. Comparing the predicted and the experimental densities, the best results were obtained for 100 benzene molecules with a COMPASS force field and an initial density of 0.9 times the experimental density. For initial densities of 70% and 90% of the experimental density, the coefficients of determination (R²) were 0.9618 and 0.9779, and the RMSE values were 0.011269 and 0.0045548, respectively. The results indicate high accuracy of the molecular dynamics simulation for density prediction of pure benzene.

Keywords

Main Subjects


 [1] Parrinello M, Rahman A. Crystal structure and pair potentials: A molecular-dynamics study. Physical review letters. 1980 Oct 6;45(14):1196. DOI: https://doi.org/10.1103/PhysRevLett.45.1196.
[2] Andersen HC. Molecular dynamics simulations at constant pressure and/or temperature. The Journal of chemical physics. 1980 Feb 15;72(4):2384-93. DOI: https://doi.org/10.1063/1.439486.
[3] Nosé, S., A unified formulation of the constant temperature molecular dynamics methods. The Journal of Chemical Physics, 1984. 81(1): p. 511-519. DOI: https://doi.org/10.1063/1.447334.
[4] van Gunsteren WF, Mark AE. Validation of molecular dynamics simulation. The Journal of chemical physics. 1998 Apr 15;108(15):6109-16. DOI: https://doi.org/10.1063/1.476021.
[5] Moradi H, Azizpour H, Bahmanyar H, Rezamandi N, Zahedi P. Effect of Si/Al ratio in the faujasite structure on adsorption of methane and nitrogen: a molecular dynamics study. Chemical Engineering & Technology. 2021 Jul;44(7):1221-6. DOI: https://doi.org/10.1002/ceat.202000356.
[6] Moradi H, Azizpour H, Bahmanyar H, Mohammadi M. Molecular dynamics simulation of H2S adsorption behavior on the surface of activated carbon. Inorganic Chemistry Communications. 2020 Aug 1;118:108048. DOI: https://doi.org/10.1016/j.inoche.2020.108048.
[7] Emamian M, Azizpour H, Moradi H, Keynejad K, Bahmanyar H, Nasrollahi Z. Performance of molecular dynamics simulation for predicting of solvation free energy of neutral solutes in methanol. Chemical Product and Process Modeling. 2022 Oct 27;17(5):489-97. DOI: http://dx.doi.org/10.1515/cppm-2021-0014.
[8] Moradi H, Azizpour H, Bahmanyar H, Mohammadi M, Akbari M. Prediction of methane diffusion coefficient in water using molecular dynamics simulation. Heliyon. 2020 Nov 1;6(11). DOI: https://doi.org/10.1016/j.heliyon.2020.e05385.
[9] Jafari L, Moradi H, Tavan Y. A theoretical and industrial study of component co-adsorption on 3A zeolite: an industrial case. Chemical Papers. 2020 Feb;74(2):651-61. DOI: http://dx.doi.org/10.1007/s11696-019-00910-x.
[10] Karplus M, McCammon JA. Molecular dynamics simulations of biomolecules. Nature structural biology. 2002 Sep 1;9(9):646-52. DOI: http://dx.doi.org/10.1038/nsb0902-646.
[11] Alejandre J, Tildesley DJ, Chapela GA. Molecular dynamics simulation of the orthobaric densities and surface tension of water. The Journal of chemical physics. 1995 Mar 15;102(11):4574-83. DOI: http://dx.doi.org/10.1063/1.469505.
[12] Nosé S, Klein ML. Constant pressure molecular dynamics for molecular systems. Molecular Physics. 1983 Dec 10;50(5):1055-76. DOI: https://ui.adsabs.harvard.edu/link_gateway/1983MolPh..50.1055N/doi:10.1080/00268978300102851.
[13] Gillan MJ, Alfe D, Brodholt J, Vočadlo L, Price GD. First-principles modelling of Earth and planetary materials at high pressures and temperatures. Reports on progress in physics. 2006 Jul 25;69(8):2365. DOI: https://ui.adsabs.harvard.edu/link_gateway/2006RPPh...69.2365G/doi:10.1088/0034 4885/69/8/R03.
[14] Schmidt J, VandeVondele J, Kuo IF, Sebastiani D, Siepmann JI, Hutter J, Mundy CJ. Isobaric− isothermal molecular dynamics simulations utilizing density functional theory: an assessment of the structure and density of water at near-ambient conditions. The Journal of Physical Chemistry B. 2009 Sep 3;113(35):11959-64. DOI: https://doi.org/10.1021/jp901990u.
[15] Cerezo J, Aranda D, Avila Ferrer FJ, Prampolini G, Santoro F. Adiabatic-molecular dynamics generalized vertical hessian approach: a mixed quantum classical method to compute electronic spectra of flexible molecules in the condensed phase. Journal of Chemical Theory and Computation. 2019 Dec 19;16(2):1215-31. DOI: https://doi.org/10.1021/acs.jctc.9b01009.
[16] Grimme S, Bannwarth C, Caldeweyher E, Pisarek J, Hansen A. A general intermolecular force field based on tight-binding quantum chemical calculations. The Journal of Chemical Physics. 2017 Oct 28;147(16). DOI: https://doi.org/10.1063/1.4991798.
[17] Grimme S. A general quantum mechanically derived force field (QMDFF) for molecules and condensed phase simulations. Journal of chemical theory and computation. 2014 Oct 14;10(10):4497-514. DOI: http://dx.doi.org/10.1021/ct500573f.
[18] Zhang C, Bell D, Harger M, Ren P. Polarizable multipole-based force field for aromatic molecules and nucleobases. Journal of chemical theory and computation. 2017 Feb 14;13(2):666-78. DOI: https://doi.org/10.1021/acs.jctc.6b00918.
[19] Giese TJ, York DM. Quantum mechanical force fields for condensed phase molecular simulations. Journal of Physics: Condensed Matter. 2017 Aug 17;29(38):383002. DOI: https://doi.org/10.1088/1361-648x/aa7c5c.
[20] Harrison JA, Schall JD, Maskey S, Mikulski PT, Knippenberg MT, Morrow BH. Review of force fields and intermolecular potentials used in atomistic computational materials research. Applied Physics Reviews. 2018 Sep 1;5(3). DOI: http://dx.doi.org/10.1063/1.5020808.
[21] Wang J, Hou T. Application of molecular dynamics simulations in molecular property prediction. 1. density and heat of vaporization. Journal of chemical theory and computation. 2011 Jul 12;7(7):2151-65. DOI: https://doi.org/10.1021/ct200142z.
[22] Brüsewitz M, Weiss A. Pressure‐Temperature‐Dependence of Mass Density and Self‐Diffusion Coefficients in the Binary Liquid System n‐Hexane/Benzene. Berichte der Bunsengesellschaft für physikalische Chemie. 1990 Mar;94(3):386-91. DOI: https://doi.org/10.1002/bbpc.19900940337.