[1] Choi SU, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. Argonne National Lab.(ANL), Argonne, IL (United States); 1995 Oct 1.
[3] Zhu D, Li X, Wang N, Wang X, Gao J, Li H. Dispersion behavior and thermal conductivity characteristics of Al2O3–H2O nanofluids. Current Applied Physics. 2009 Jan 1;9(1):131-9.
https://doi.org/10.1016/j.cap.2007.12.008.
[4] Shahsavar A, Godini A, Sardari PT, Toghraie D, Salehipour H. Impact of variable fluid properties on forced convection of Fe 3 O 4/CNT/water hybrid nanofluid in a double-pipe mini-channel heat exchanger. Journal of Thermal Analysis and Calorimetry. 2019 Aug 15;137:1031-43.
https://doi.org/10.1007/s10973-018-07997-6.
[5] Kumar N, Urkude N, Sonawane SS, Sonawane SH. Experimental study on pool boiling and Critical Heat Flux enhancement of metal oxides based nanofluid. International Communications in Heat and Mass Transfer. 2018 Aug 1;96:37-42.
https://doi.org/10.1016/j.icheatmasstransfer.2018.05.018.
[6] Vijay J, Sonawane Shriram S. Investigations on rheological behaviour of paraffin based Fe3O4 nanofluids and its modelling. Res. J. Chem. Environ. 2015 Dec;19(12):22-9.
[8] Bhanvase BA, Barai DP, Sonawane SH, Kumar N, Sonawane SS. Intensified heat transfer rate with the use of nanofluids. In Handbook of nanomaterials for industrial applications 2018 Jan 1 (pp. 739-750). Elsevier.
https://doi.org/10.1016/B978-0-12-813351-4.00042-0.
[9] Malika MM, Sonawane SS. Review on application of nanofluid/nano particle as water disinfectant. Journal of Indian Association for Environmental Management (JIAEM). 2019;39(1-4):21-4.
[10] Khan M, Mishra S, Ratna D, Sonawane S, Shimpi NG. Investigation of thermal and mechanical properties of styrene–butadiene rubber nanocomposites filled with SiO2–polystyrene core–shell nanoparticles. Journal of Composite Materials. 2020 Jun;54(14):1785-95.
[11] Yu W, Choi AS. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. Journal of nanoparticle research. 2003 Apr;5:167-71.
https://doi.org/10.1023/A:1024438603801.
[12] Nadooshan AA. An experimental correlation approach for predicting thermal conductivity of water-EG based nanofluids of zinc oxide. Physica E: Low-dimensional Systems and Nanostructures. 2017 Mar 1;87:15-9.
https://doi.org/10.1016/j.physe.2016.11.004.
[13] Esfe MH, Razi P, Hajmohammad MH, Rostamian SH, Sarsam WS, Arani AA, Dahari M. Optimization, modeling and accurate prediction of thermal conductivity and dynamic viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids by NSGA-II using ANN. International Communications in Heat and Mass Transfer. 2017 Mar 1;82:154-60.
https://doi.org/10.1016/j.icheatmasstransfer.2016.08.015.
[14] Esfe MH, Esfandeh S, Saedodin S, Rostamian H. Experimental evaluation, sensitivity analyzation and ANN modeling of thermal conductivity of ZnO-MWCNT/EG-water hybrid nanofluid for engineering applications. Applied Thermal Engineering. 2017 Oct 1;125:673-85.
https://doi.org/10.1016/j.applthermaleng.2017.06.077.
[16] Heris SZ, Pour MB, Mahian O, Wongwises S. A comparative experimental study on the natural convection heat transfer of different metal oxide nanopowders suspended in turbine oil inside an inclined cavity. International Journal of Heat and Mass Transfer. 2014 Jun 1;73:231-8.
https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.071.
[17] Mahian O, Kianifar A, Heris SZ, Wongwises S. Natural convection of silica nanofluids in square and triangular enclosures: theoretical and experimental study. International Journal of Heat and Mass Transfer. 2016 Aug 1;99:792-804.
https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.045.
[19] Afrand M, Najafabadi KN, Akbari M. Effects of temperature and solid volume fraction on viscosity of SiO2-MWCNTs/SAE40 hybrid nanofluid as a coolant and lubricant in heat engines. Applied Thermal Engineering. 2016 Jun 5;102:45-54.
https://doi.org/10.1016/j.applthermaleng.2016.04.002.
[20] Afrand M, Toghraie D, Sina N. Experimental study on thermal conductivity of water-based Fe3O4 nanofluid: development of a new correlation and modeled by artificial neural network. International Communications in Heat and Mass Transfer. 2016 Jul 1;75:262-9.
https://doi.org/10.1016/j.icheatmasstransfer.2016.04.023.
[21] Esfe MH, Behbahani PM, Arani AA, Sarlak MR. Thermal conductivity enhancement of SiO2–MWCNT (85: 15%)–EG hybrid nanofluids. J Therm Anal Calorim. 2017 Apr;128(1):249-58. DOI 10.1007/s10973-016-5893-9.
[22]Esfe MH, Hajmohammad MH. Thermal conductivity and viscosity optimization of nanodiamond-Co3O4/EG (40: 60) aqueous nanofluid using NSGA-II coupled with RSM. Journal of Molecular Liquids. 2017 Jul 1;238:545-52.
https://doi.org/10.1016/j.molliq.2017.04.056.
[23] Esfe MH, Ahangar MR, Rejvani M, Toghraie D, Hajmohammad MH. Designing an artificial neural network to predict dynamic viscosity of aqueous nanofluid of TiO2 using experimental data. International communications in heat and mass transfer. 2016 Jul 1;75:192-6.
https://doi.org/10.1016/j.icheatmasstransfer.2016.04.002.
[24] Esfe MH, Hajmohammad MH, Razi P, Ahangar MR, Arani AA. The optimization of viscosity and thermal conductivity in hybrid nanofluids prepared with magnetic nanocomposite of nanodiamond cobalt-oxide (ND-Co3O4) using NSGA-II and RSM. International Communications in Heat and Mass Transfer. 2016 Dec 1;79:128-34.
https://doi.org/10.1016/j.icheatmasstransfer.2016.09.015.
[25] Rostamian SH, Biglari M, Saedodin S, Esfe MH. An inspection of thermal conductivity of CuO-SWCNTs hybrid nanofluid versus temperature and concentration using experimental data, ANN modeling and new correlation. Journal of Molecular Liquids. 2017 Apr 1;231:364-9.
https://doi.org/10.1016/j.molliq.2017.02.015.
[26] Zhang YY, Pei QX, Cheng Y, Zhang YW, Zhang X. Thermal conductivity of penta-graphene: the role of chemical functionalization. Computational Materials Science. 2017 Sep 1;137:195-200.
https://doi.org/10.1016/j.commatsci.2017.05.042.
[27] Esfe MH, Yan WM, Afrand M, Sarraf M, Toghraie D, Dahari M. Estimation of thermal conductivity of Al2O3/water (40%)–ethylene glycol (60%) by artificial neural network and correlation using experimental data. International Communications in Heat and Mass Transfer. 2016 May 1;74:125-8.
https://doi.org/10.1016/j.icheatmasstransfer.2016.02.002.
[28] Bashirnezhad K, Bazri S, Safaei MR, Goodarzi M, Dahari M, Mahian O, Dalkılıça AS, Wongwises S. Viscosity of nanofluids: a review of recent experimental studies. International Communications in Heat and Mass Transfer. 2016 Apr 1;73:114-23.
https://doi.org/10.1016/j.icheatmasstransfer.2016.02.005.
[29] Hemmat Esfe M, Saedodin S, Mahian O, Wongwises S. Thermal conductivity of Al 2 O 3/water nanofluids: measurement, correlation, sensitivity analysis, and comparisons with literature reports. Journal of Thermal Analysis and Calorimetry. 2014 Aug;117:675-81.
https://doi.org/10.1007/s10973-014-3771-x.
[31] Zhang X, Gu H, Fujii M. Experimental study on the effective thermal conductivity and thermal diffusivity of nanofluids. International Journal of Thermophysics. 2006 Mar;27:569-80.
https://doi.org/10.1007/s10765-006-0054-1.
[32] Masuda H, Ebata A, Teramae K. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles.
[33] Eastman JA, Choi SU, Li S, Yu W, Thompson LJ. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied physics letters. 2001 Feb 5;78(6):718-20.
https://sid.ir/paper/596250/en.
[37] Eshgarf H, Nadooshan AA, Raisi A, Afrand M. Experimental examination of the properties of Fe3O4/water nanofluid, and an estimation of a correlation using an artificial neural network. Journal of Molecular Liquids. 2023 Mar 15;374:121150.
http://dx.doi.org/10.1016/j.molliq.2022.121150.
[38] Jahan A, Edwards KL, Bahraminasab M. Multi-criteria decision analysis for supporting the selection of engineering materials in product design. Butterworth-Heinemann; 2016 Feb 17.
[39] Malika M, Sonawane SS. Application of RSM and ANN for the prediction and optimization of thermal conductivity ratio of water based Fe2O3 coated SiC hybrid nanofluid. International Communications in Heat and Mass Transfer. 2021 Jul 1;126:105354.
https://doi.org/10.1016/j.icheatmasstransfer.2021.105354.
[40] Esfe MH, Firouzi M, Afrand M. Experimental and theoretical investigation of thermal conductivity of ethylene glycol containing functionalized single walled carbon nanotubes. Physica E: Low-dimensional Systems and Nanostructures. 2018 Jan 1;95:71-7.
https://doi.org/10.1016/j.physe.2017.08.017.
[41] Peng Y, Khaled U, Al-Rashed AA, Meer R, Goodarzi M, Sarafraz MM. Potential application of Response Surface Methodology (RSM) for the prediction and optimization of thermal conductivity of aqueous CuO (II) nanofluid: A statistical approach and experimental validation. Physica A: Statistical Mechanics and its Applications. 2020 Sep 15;554:124353.
https://doi.org/10.1016/j.physa.2020.124353.
[42] Esfe, M.H., et al., The effect of different parameters on ability of the proposed correlations for the rheological behavior of SiO2-MWCNT (90: 10)/SAE40 oil-based hybrid nano-lubricant and presenting five new correlations. ISA transactions, 2022.
128: p. 488-497.
https://doi.org/10.1016/j.isatra.2021.10.012.
[43] Khetib Y, Abo-Dief HM, Alanazi AK, Rawa M, Sajadi SM, Sharifpur M. Competition of ANN and RSM techniques in predicting the behavior of the CuO-liquid paraffin. Chemical Engineering Communications. 2023 Jun 3;210(6):880-92.
https://doi.org/10.1080/00986445.2021.1980398.
[44] Esfe MH, Firouzi M, Rostamian H, Afrand M. Prediction and optimization of thermophysical properties of stabilized Al2O3/antifreeze nanofluids using response surface methodology. Journal of Molecular Liquids. 2018 Jul 1;261:14-20.
https://doi.org/10.1016/j.molliq.2018.03.063.
[45] Khetib Y, Alahmadi A, Alzaed A, Sajadi SM, Vaziri R, Sharifpur M. Using neural network and RSM to evaluate improvement in thermal conductivity of nanodiamond-iron oxide/antifreeze. Chemical Engineering Communications. 2023 Apr 3;210(4):596-606.
https://doi.org/10.1080/00986445.2021.1974417.
[46] Khetib Y, Sedraoui K, Gari A. Improving thermal conductivity of a ferrofluid-based nanofluid using Fe3O4-challenging of RSM and ANN methodologies. Chemical Engineering Communications. 2022 May 23;209(8):1070-81.
https://doi.org/10.1080/00986445.2021.1943369.
[47] Shahsavar A, Sepehrnia M, Maleki H, Darabi R. Thermal conductivity of hydraulic oil-GO/Fe3O4/TiO2 ternary hybrid nanofluid: experimental study, RSM analysis, and development of optimized GPR model. Journal of Molecular Liquids. 2023 Sep 1;385:122338.
https://doi.org/10.1016/j.molliq.2023.122338.
[48] Borode A, Olubambi P. Modelling the effects of mixing ratio and temperature on the thermal conductivity of GNP-Alumina hybrid nanofluids: A comparison of ANN, RSM, and linear regression methods. Heliyon. 2023 Aug 1;9(8).
https://doi.org/10.1016/j.heliyon.2023.e19228.
[49] Esfe MH, Toghraie D, Esfandeh S, Alidoust S. Measurement of thermal conductivity of triple hybrid water based nanofluid containing MWCNT (10%)-Al2O3 (60%)-ZnO (30%) nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2022 Aug 20;647:129083.
https://doi.org/10.1016/j.colsurfa.2022.129083.
[50] Esfe MH, Alidoust S, Tamrabad SN, Toghraie D, Hatami H. Thermal conductivity of MWCNT-TiO2/Water-EG hybrid nanofluids: Calculating the price performance factor (PPF) using statistical and experimental methods (RSM). Case Studies in Thermal Engineering. 2023 Aug 1;48:103094.
https://doi.org/10.1016/j.csite.2023.103094.
[52] Raei B, Shahraki F, Jamialahmadi M, Peyghambarzadeh SM. Experimental study on the heat transfer and flow properties of γ-Al 2 O 3/water nanofluid in a double-tube heat exchanger. Journal of Thermal Analysis and Calorimetry. 2017 Mar;127:2561-75.
https://doi.org/10.1007/s10973-016-5868-x.
[53] Raei, B., et al., Experimental investigation on the heat transfer performance and pressure drop characteristics of γ-Al2O3/water nanofluid in a double tube counter flow heat exchanger. Challenges in Nano and Micro Scale Science and Technology, 2016.
5(1): p. 64-75.
https://doi.org/10.7508/tpnms.2017.01.007.
[55] Raei B, Peyghambarzadeh SM, Asl RS. Experimental investigation on heat transfer and flow resistance of drag-reducing alumina nanofluid in a fin-and-tube heat exchanger. Applied Thermal Engineering. 2018 Nov 5;144:926-36.
https://doi.org/10.1016/j.applthermaleng.2018.09.006.
[56] Raei, B. and S.M. Peyghambarzadeh, Measurement of Local Convective Heat Transfer Coefficient of Alumina-Water Nanofluids in a Double Tube Heat Exchanger. Journal of Chemical and Petroleum engineering, 2019.
53(1): p. 25-36.
https://doi.org/10.22059/jchpe.2019.265521.1247.
[57] Mukherjee S, Panda SR, Mishra PC, Chaudhuri P. Enhancing thermophysical characteristics and heat transfer potential of TiO 2/water nanofluid. International Journal of Thermophysics. 2020 Dec;41:1-33.
https://doi.org/10.1007/s10765-020-02745-1.
[58] Ali N, Teixeira JA, Addali A. A review on nanofluids: fabrication, stability, and thermophysical properties. Journal of Nanomaterials. 2018;2018(1):6978130.
https://doi.org/10.1155/2018/6978130.
[59] Cabaleiro D, Colla L, Barison S, Lugo L, Fedele L, Bobbo SJ. Heat transfer capability of (ethylene glycol+ water)-based nanofluids containing graphene nanoplatelets: Design and thermophysical profile. Nanoscale research letters. 2017 Dec;12:1-1.
https://doi.org/10.1186/s11671-016-1806-x.
[60] Fedele L, Colla L, Bobbo S, Barison S, Agresti F. Experimental stability analysis of different water-based nanofluids. Nanoscale research letters. 2011 Dec;6:1-8.
https://doi.org/10.1186/1556-276X-6-300.
[62] Sodeifian GH, Azizi J, Ghoreishi SM. Response surface optimization of Smyrnium cordifolium Boiss (SCB) oil extraction via supercritical carbon dioxide. The Journal of Supercritical Fluids. 2014 Nov 1;95:1-7.
https://doi.org/10.1016/j.supflu.2014.07.023.
[63] Sodeifian G, Saadati Ardestani N, Sajadian SA. Extraction of seed oil from Diospyros lotus optimized using response surface methodology. Journal of forestry research. 2019 Apr 15;30:709-19.
https://doi.org/10.1007/s11676-018-0631-8.
[64] Sodeifian G, Ardestani NS, Sajadian SA, Moghadamian K. Properties of Portulaca oleracea seed oil via supercritical fluid extraction: Experimental and optimization. The Journal of Supercritical Fluids. 2018 May 1;135:34-44.
https://doi.org/10.1016/j.supflu.2017.12.026.
[65] Sodeifian G, Sajadian SA, Honarvar B. Mathematical modelling for extraction of oil from Dracocephalum kotschyi seeds in supercritical carbon dioxide. Natural product research. 2018 Apr 3;32(7):795-803.
https://doi.org/10.1080/14786419.2017.1361954.
[66] Sodeifian G, Sajadian SA, Ardestani NS. Experimental optimization and mathematical modeling of the supercritical fluid extraction of essential oil from Eryngium billardieri: Application of simulated annealing (SA) algorithm. The journal of supercritical fluids. 2017 Sep 1;127:146-57.
https://doi.org/10.1016/j.supflu.2017.04.007.
[67] Ameri A, Sodeifian G, Sajadian SA. Lansoprazole loading of polymers by supercritical carbon dioxide impregnation: Impacts of process parameters. The Journal of Supercritical Fluids. 2020 Oct 1;164:104892.
https://doi.org/10.1016/j.supflu.2020.104892.
[68] Fathi M, Sodeifian G, Sajadian SA. Experimental study of ketoconazole impregnation into polyvinyl pyrrolidone and hydroxyl propyl methyl cellulose using supercritical carbon dioxide: Process optimization. The Journal of Supercritical Fluids. 2022 Sep 1;188:105674.
https://doi.org/10.1016/j.supflu.2022.105674.
[69] Ardestani, N.S., G. Sodeifian, and S.A. Sajadian, Preparation of phthalocyanine green nano pigment using supercritical CO2 gas antisolvent (GAS): experimental and modeling. Heliyon, 2020. 6(9).
https://doi.org/10.1016/j.heliyon.2020.e04947.
[70] Sodeifian G, Sajadian SA, Derakhsheshpour R. CO2 utilization as a supercritical solvent and supercritical antisolvent in production of sertraline hydrochloride nanoparticles. Journal of CO2 Utilization. 2022 Jan 1;55:101799.
https://doi.org/10.1016/j.jcou.2021.101799.
[71] Hazaveie SM, Sodeifian G, Ardestani NS. Micro and nanosizing of Tamsulosin drug via supercritical CO2 antisolvent (SAS) process. Journal of CO2 Utilization. 2024 Jun 1;84:102847.
https://doi.org/10.1016/j.jcou.2024.102847.
[72] Lau HL, Wong FW, Abd Rahman RN, Mohamed MS, Ariff AB, Hii SL. Optimization of fermentation medium components by response surface methodology (RSM) and artificial neural network hybrid with genetic algorithm (ANN-GA) for lipase production by Burkholderia cenocepacia ST8 using used automotive engine oil as substrate. Biocatalysis and Agricultural Biotechnology. 2023 Jul 1;50:102696.
https://doi.org/10.1016/j.bcab.2023.102696.
[73] Hussain S, Khan H, Gul S, Steter JR, Motheo AJ. Modeling of photolytic degradation of sulfamethoxazole using boosted regression tree (BRT), artificial neural network (ANN) and response surface methodology (RSM); energy consumption and intermediates study. Chemosphere. 2021 Aug 1;276:130151.
https://doi.org/10.1016/j.chemosphere.2021.130151.
[74] Borode AO, Ahmed NA, Olubambi PA, Sharifpur M, Meyer JP. Effect of various surfactants on the viscosity, thermal and electrical conductivity of graphene nanoplatelets nanofluid. International Journal of Thermophysics. 2021 Nov;42(11):158.
https://doi.org/10.1007/s10765-021-02914-w.
[75] Amiri A, Shanbedi M, Dashti H. Thermophysical and rheological properties of water-based graphene quantum dots nanofluids. Journal of the Taiwan Institute of Chemical Engineers. 2017 Jul 1;76:132-40.
https://doi.org/10.1016/j.jtice.2017.04.005.
[76] Rostamian H, Lotfollahi MN. A novel statistical approach for prediction of thermal conductivity of CO2 by Response Surface Methodology. Physica A: Statistical Mechanics and its Applications. 2019 Aug 1;527:121175.
https://doi.org/10.1016/j.physa.2019.121175.
[77] Wasp EJ, Kenny JP, Gandhi RL. Solid--liquid flow: slurry pipeline transportation. [Pumps, valves, mechanical equipment, economics]. Ser. Bulk Mater. Handl.;(United States). 1977 Jan 1;1(4).
[78] Williams AJ. Expendable benthic lander (XBL). In2008 IEEE/OES US/EU-Baltic International Symposium 2008 May 27 (pp. 1-8). IEEE.
[79] Ho CJ, Liu WK, Chang YS, Lin CC. Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: An experimental study. International Journal of Thermal Sciences. 2010 Aug 1;49(8):1345-53.
https://doi.org/10.1016/j.ijthermalsci.2010.02.013.
[80] Rostamian H, Lotfollahi MN. A new simple equation of state for calculating solubility of solids in supercritical carbon dioxide. Periodica Polytechnica Chemical Engineering. 2015 Feb 18;59(3):174-85.
https://doi.org/10.3311/PPch.7714.
[81] Zhao TH, Castillo O, Jahanshahi H, Yusuf A, Alassafi MO, Alsaadi FE, Chu YM. A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak. Applied and Computational Mathematics. 2021 Jan 1;20(1):160-76.