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Based on the Tao-Mason equation of state, we have proposed a nonlinear 

ordinary differential equation that asymptotically converges to the 

compressibility factor of a pure substance or a mixture of chemical species. 

We have used the Dormand-Prince pair algorithm to solve the 

aforementioned differential equation in a purely numerical manner. Our 

method is devoid of the adverse convergence issues that are usually 

associated with Newton-type solvers. We have provided two case studies 

concerning two industrially common compounds namely ethane and carbon 

dioxide, for the sake of exposition. For 96 points of different temperatures 

and pressures, our method succeeded at calculating the compressibility 

factor of carbon dioxide with an average absolute error of 6.53×10-5 and a 

maximum absolute error of 4.79×10-4. Unlike the previous root-finding 

algorithms, we only need to perform “formal” polynomial deflations in our 

method, which circumvents the computation-intensive synthetic divisions, 

to obtain all compressibility factors offered by the Tao-Mason EOS. 

Introduction 

An equation of state (EOS) is a valuable mathematical model that relates temperature, 

pressure, and the specific volume of a given pure fluid or a mixture. Other thermodynamic 

properties such as enthalpy, entropy, latent heat, vapor pressure as well as phase equilibrium 

data can be calculated from a suitable EOS. The aforementioned properties and data are 

essential for the design of many pieces of chemical engineering equipment, such as distillation 

columns [1-4]. 

Since the advent of the van der Waals EOS  in 1873, dozens of equations of state have been 

proposed. They are  either purely empirical, semi-empirical, or completely theoretical,  each with 

its own strengths and weaknesses. A set of equations of states come in the form of polynomials 

of the specific volume or equivalently, the compressibility factor, with their coefficients being 

functions of temperature, pressure, and possibly some molecular indicators. Among them, cubic 

equations of states are well-known and popular due to their simplicity and their acceptable 

accuracy [5]. For instance, the Peng-Robinson EOS, as a two-parameter cubic equation, has 

gained a dependable reputation for predicting the properties of nonpolar hydrocarbons in the 

industrial community [6-9]. Several non-cubic equations of state have also been proposed in 

the literature having their strengths and limitations [10, 11]. 

 
* Corresponding Author: H. Fatoorehchi (E-mail address: hfatoorehchi@ut.ac.ir)  

Journal of Chemical and Petroleum Engineering (JChPE) 

Print ISSN: 2423-673X   Online ISSN: 2423-6721 

 

https://orcid.org/0000-0002-0102-4229


234 
 

 

The Tao-Mason EOS has been hailed by thermodynamists and physical chemists because of 

its accuracy and its sound theoretical basis. It is based on the statistical-mechanical perturbation 

theory for hard spheres and molecular fluids and provides accurate results for density as well 

as the phase boundaries (vapor pressures) [12]. The Tao-Mason EOS has been modified to 

predict the thermodynamic properties of ionic liquids with improved accuracy [13]. 

Nevertheless, the Tao-Mason EOS is actually a septic, i.e., of degree seven, polynomial in 

the specific volume or the compressibility factor, which makes it unfavorable from the 

computational viewpoint. This is deduced from the celebrated Abel-Ruffini theorem, which 

states that there can be no general algebraic solution to polynomial equations of degree five or 

higher. Inevitably, Newton-type solvers are recommended for solving the Tao-Mason EOS, yet 

they are inherently prone to convergence issues if not properly initialized [14-16]. 

The Dormand-Prince method is actually a variable-step numerical integrator and has been 

widely used in the simulation of dynamical systems in various branches of science and 

engineering. In fact, it is a hybridization of the fourth and the fifth Runge-Kutta algorithms. 

The Dormand-Prince method has been incorporated into the MATLAB software package as a 

default ODE solver under the name of “ode45”.  

In this paper, we modify the classical Tao-Mason EOS and convert it to a nonlinear ODE, 

which will be solved by the Dormand-Prince method numerically. Each converged solution of 

the aforementioned ODE is one zero of the original Tao-Mason EOS. Once combined with 

polynomial deflation or by changing the initial condition, we will obtain an algorithm for 

calculating all the zeros through a repetitive procedure. 

The Proposed Method  

The original Tao-Mason [17] can be written as a septic polynomial in the compressibility 

factor as follows: 
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C
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= , k  is Boltzmann’s constant, 2B  denotes the second virial 

coefficient, b  is the effective Van der Waals co-volume, and   is a temperature-dependent 

parameter that quantifies the contribution of the repulsion forces to the second virial coefficient. 

Furthermore,  

1 0.143A =  

( )1.093

2 1.64 2.65 1A e−= + −  

( )1.093 0.26 0.002 4.50 0.002   = + + + +
 

 

(2) 

where   is Pitzer’s acentric factor. Also,   is a characteristic parameter that has been 

correlated to the acentric factor as follows: 
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0.4324 0.3331 = −  (3) 

Theoretically, it is possible to determine the three parameters 2B , b , and   accurately if the 

intermolecular potential is known. However, in the absence of experimental data, it has been 

found super convenient to use macroscopic corresponding states correlations that are based on 

critical temperature and pressure as well as the acentric factor for the calculation of 2B . 

Particularly, the following one that is due to Tsonopoulos is widely used [18]: 

( ) ( ) ( ) ( )0 12c
r r

c

P B
f T f T

RT
= +  (4) 

where rT  is the reduced temperature, cP  and cT  denote the critical pressure and temperature 

respectively. The functions 
( )0

f  and 
( )1

f  are defined as: 
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Adopting the Lennard-Jones (Eqs. 6 and 12) intermolecular pair potential, it is possible can 

calculate the parameters   and b  as functions of the Boyle temperature BT  and the Boyle 

volume BV  by 
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 (8) 

Now, for brevity, we rewrite Eq. 1 as: 

7 6 5 4 3 2

1 2 3 4 5 6 7 0,z k z k z k z k z k z k z k+ + + + + + + =  (9) 

where, obviously, 1k  to 7k  are known constants for a given substance at a prescribed 

temperature and pressure. 

Next, we propose the following dynamical nonlinear ODE, which can converge to one zero 

of Eq. 9 as t  tends to positive infinity. It is worthwhile to mention that the factor 
te  is for 
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convergence improvement and can possibly replaced by unity at the penalty of poor 

convergence. 

 

 ( )7 6 5 4 3 2

1 2 3 4 5 6 7 ,tdx
e x k x k x k x k x k x k x k

dt
= + + + + + + +  (10) 

Theorem 2.1 

Consider the nonlinear ODE (Eq. 10) with an arbitrary finite initial condition. If dx dt  is 

asymptotically bounded, then the ODE converges to one zeros of the polynomial  

7 6 5 4 3 2

1 2 3 4 5 6 7( )P x x k x k x k x k x k x k x k= + + + + + + + . (11) 

Proof: Since dx dt  is asymptotically bounded, we are assured that there exists a real number 

M  such that 

lim
t

dx
M M

dt→+
−   . (12) 

Now, in view of Eq. 10, it follows that 

( )7 6 5 4 3 2

1 2 3 4 5 6 7lim t

t
M e x k x k x k x k x k x k x k M

→+
−  + + + + + + +  . (13) 

For the compound inequality (Eq. 13) to hold, we should have 

( )7 6 5 4 3 2

1 2 3 4 5 6 7lim 0
t

x k x k x k x k x k x k x k
→+

+ + + + + + + = , (14) 

because 
te  ultimately tends to infinity as t  increases. Eq. 14 implies that the dynamic state 

function ( )x t  asymptotically converges to one zero of polynomial ( )P x  regardless of ( )0x . 

Remark 2.1 

It is possible to translate the equilibrium point of Eq. 10 to the origin, i.e., 0x = , and then 

use the Lyapunov theorems for the stability of non-autonomous equations to develop theorems 

on the sufficient conditions for asymptotical stability of ODE (Eq. 10). However, it requires the 

knowledge of the zeroes of ( )P x  or at least their signs. Therefore, it is safe to say that Theorem 

2.1 is the best result that we can obtain regarding the convergence of Eq. 10. 

In case the condition of Theorem 2.1 is not satisfied, the solution of Eq. 10 diverges to positive 

or negative infinity. 

Once one zero of ( )P x  is obtained, we can perform polynomial deflation and repeat the 

whole procedure to search for other zeroes. 

Lemma 2.1  

If the conditions of Theorem 2.1 hold, then the following nonlinear ODE also converges to one 

zero of ( )P x : 

( )7 6 5 4 3 2

1 2 3 4 5 6 7

tdx
e x k x k x k x k x k x k x k

dt
= − + + + + + + + .  (15) 
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Note 2.1 

Since the Tao-Mason EOS is a septic polynomial with real coefficients, its complex zeros, 

if any, are conjugate. It is immediately followed by the complex conjugate root theorem [19]. 

This fact helps us to filter out the unwanted zeros faster, those without physical meaning, of the 

Tao-Mason EOS. 

Illustrative Example 

The First Case Study: Ethane 

In this section, we will calculate the compressibility factors for ethane at 7 atm and 20 oC as 

provided by the Tao-Mason EOS for the sake of illustration. The required constants and 

thermophysical properties of ethane are listed in Table 1. 

Table 1. Thermophysical properties of ethane [20] 

VB, Boyle volume 90.6 × 10−6m3/mol 

TB, Boyle temperature 770.8 K 

TC, Critical temperature 305.4 K 

PC, Critical pressure 48.8 × 105 Pa 

 , Acentric factor 0.098 

MW, Molecular weight 30.0690 g/mol 

Thus, the coefficients of the polynomial P(X) are readily calculated and listed in Table 2. 

Table 2. The numerical values of the coefficients of the polynomial (Eq. 11) for the first case study 

1k  -1.01181895514 

2k  0.0679401791848 

3k  -0.000593620506246 

4k  -0.00000408817520196 

5k  -0.00000138819887581 

6k  0.0000000932128024359 

7k  -0.00000000144827082441 

Now, if we start with the arbitrary initial condition x(0) =1+i, the Dormand-Prince method 

yields a solution that quickly converges to 0.058137  asymptotically. If we vary the initial 

condition x(0), we will obtain other roots of the Tao-Mason equation of state as asymptotes. 

Table 3 lists these quantities. 

Table 3. Different zeroes of the polynomial (Eq. 11) as a result of different initial conditions 

x(0) Converged Solution of ODE (Eq. 10) Exact Zero of Polynomial (Eq. 11) 

1+i 0.058137 0.058122 

i 0.021041+0.023124 i  0.021041+0.023124 i  

We can deflate the polynomial (Eq. 11) by factoring out the zero 0.058137 only formally, 

and focus on the following nonlinear ODE for obtaining the other zeroes of ( )P x : 

( )7 6 5 4 3 2

1 2 3 4 5 6 7

0.058137

te x k x k x k x k x k x k x kdx

dt x

+ + + + + + +
=

−
 (16) 

Repeating the previous procedure, we can obtain the asymptotic solution of (Eq. 10) as 

0.022290 by the arbitrary initial condition of x(0) =0.1. 
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Also, once again, we will formally deflate polynomial (Eq. 11) and obtain a newer zero-

generating ODE as 

( )
( )( )( )( )

7 6 5 4 3 2

1 2 3 4 5 6 7

0.058137 0.022290 0.021041 0.023124 0.021041 0.023124

t

x x i x i

e x k x k x k x k x k x k x kdx

dt x − −

+ + + + +

− +
=

−

+

−

+
 (17) 

Similarly, Eq. 17 yields another zero of ( )P x , using the initial condition ( )0 0.5x i= , which 

is -0.025453+0.023851i. 

As pointed in Remark 2.1, the convergence of ODE (Eq. 10) is influenced by the sign of 

coefficients of ( )P x . On the other hand, clearly, the zeroes of  ( ) 0P x =  are the same as those 

of ( ) 0P x− = . Therefore, in view of Lemma 2.1, we modify Eq. 17 to have 

( )
( )( )( )( )

7 6 5 4 3 2

1 2 3 4 5 6 7

0.058137 0.022290 0.021041 0.023124 0.025453 0.023851 .

t

d

x x x

e x k x k x k x k x k x k x kx

d it x i

− + + + + + + +
=

− −  + −
 (18) 

whose solution with ( )0 10x =  tends to 0.940295 quickly. 

As we have obtained all the seven zeroes of ( )P x , we can list and assess their accuracy as given 

in Table 4. 

Table 4. All zeroes of the polynomial (11) and their corresponding initial conditions 

x(0) Converged Solution of ODE (Eq. 10) Exact Zero of Polynomial (Eq. 11) 

1+i 0.058137 0.058122 

i 0.021041+0.023124 i  0.021041+0.023124 i  

0.1 0.022290 0.022282 

0.5 i -0.025713+0.023782 i  -0.025453+0.023851 i  

10 0.940295 0.940238 

 

The Second Case Study: Carbon Dioxide 

For the further exposition, we have calculated the compressibility factor of carbon dioxide 

at different reduced temperatures and pressures by our method and the “roots” procedure of 

MATLAB. We consider the latter as the “exact” zero for the sake of comparison, henceforth. 

The built-in “roots” algorithm in MATLAB first finds the companion matrix associated to the 

given polynomial and then performs an eigenvalue computation using the Cholesky 

factorization or generalized Schur decomposition algorithms. The results for a total number of 

96 points are given in Tables 5 to 12. As for our method, a nonlinear ODE of type (Eq. 15) was 

chosen and the initial condition ( )0 10x =  was used for all the simulations. 

Furthermore, the absolute deviation of the calculated compressibility factors for the reduced 

temperature ranging from 0.5 to 1.2 and the reduced pressure ranging from 0.1 to 1.2 are 

depicted in the 3D plot of Fig. 1. The maximum value of the absolute error 
44.79 10− , which 

corresponds to ( ) ( )Tr,Pr 0.8,0.1=  and the average absolute error is 
56.53854 10− . 
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Table 5. The compressibility factors for CO2 at Tr =0.5  and Pr ranging from 0.1 to 1.2 

(Pr,Tr) Converged Solution of ODE (Eq. 15) Exact Zero of Polynomial (Eq. 11) 

(0.1,0.5) 0.018047 0.018043 

(0.2,0.5) 0.036085 0.036084 

(0.3,0.5) 0.054131 0.054122 

(0.4,0.5) 0.072170 0.072157 

(0.5,0.5) 0.090192 0.090190 

(0.6,0.5) 0.108265 0.108220 

(0.7,0.5) 0.126334 0.126247 

(0.8,0.5) 0.144275 0.144271 

(0.9,0.5) 0.162314 0.162293 

(1,0.5) 0.180323 0.180311 

(1.1,0.5) 0.198362 0.198327 

(1.2,0.5) 0.216376 0.216341 

Table 6. The compressibility factors for CO2 at Tr =0.6  and Pr ranging from 0.1 to 1.2 

(Pr,Tr) Converged Solution of ODE (Eq. 15) Exact Zero of Polynomial (Eq. 11) 

(0.1,0.6) 0.714281 0.714225 

(0.2,0.6) 0.032107 0.032092 

(0.3,0.6) 0.048135 0.048126 

(0.4,0.6) 0.064161 0.064153 

(0.5,0.6) 0.080191 0.080172 

(0.6,0.6) 0.096208 0.096183 

(0.7,0.6) 0.112197 0.112186 

(0.8,0.6) 0.128192 0.128183 

(0.9,0.6) 0.144207 0.144171 

(1,0.6) 0.160158 0.160152 

(1.1,0.6) 0.176130 0.176126 

(1.2,0.6) 0.192102 0.192092 

Table 7. The compressibility factors for CO2 at Tr =0.7 and Pr ranging from 0.1 to 1.2 

(Pr,Tr) Converged Solution of ODE (Eq. 15) Exact Zero of Polynomial (Eq. 11) 

(0.1,0.7) 0.867548 0.867484 

(0.2,0.7) 0.629175 0.629134 

(0.3,0.7) 0.044522 0.044517 

(0.4,0.7) 0.059338 0.059323 

(0.5,0.7) 0.074138 0.074114 

(0.6,0.7) 0.088908 0.088888 

(0.7,0.7) 0.103746 0.103647 

(0.8,0.7) 0.118395 0.118390 

(0.9,0.7) 0.133157 0.133118 

(1,0.7) 0.147835 0.147830 

(1.1,0.7) 0.162547 0.162528 

(1.2,0.7) 0.177285 0.177210 

Table 8. The compressibility factors for CO2 at Tr =0.8 and Pr ranging from 0.1 to 1.2 

(Pr,Tr) Converged Solution of ODE (Eq. 15) Exact Zero of Polynomial (Eq. 11) 

(0.1,0.8) 0.921568 0.921089 

(0.2,0.8) 0.821692 0.821623 

(0.3,0.8) 0.665943 0.665780 

(0.4,0.8) 0.056803 0.056787 

(0.5,0.8) 0.070907 0.070906 

(0.6,0.8) 0.084996 0.084993 

(0.7,0.8) 0.099078 0.099051 

(0.8,0.8) 0.113096 0.113079 

(0.9,0.8) 0.127083 0.127078 

(1,0.8) 0.141056 0.141049 

(1.1,0.8) 0.154997 0.154991 

(1.2,0.8) 0.168914 0.168906 
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Table 9. The compressibility factors for CO2 at Tr =0.9 and Pr ranging from 0.1 to 1.2 

(Pr,Tr) Converged Solution of ODE (Eq. 15) Exact Zero of Polynomial (Eq. 11) 

(0.1,0.9) 0.948292 0.948203 

(0.2,0.9) 0.888927 0.888814 

(0.3,0.9) 0.817498 0.817373 

(0.4,0.9) 0.721855 0.721801 

(0.5,0.9) 0.070467 0.070407 

(0.6,0.9) 0.084332 0.084300 

(0.7,0.9) 0.098137 0.098135 

(0.8,0.9) 0.111959 0.111913 

(0.9,0.9) 0.125672 0.125636 

(1,0.9) 0.139382 0.139305 

(1.1,0.9) 0.153018 0.152922 

(1.2,0.9) 0.166510 0.166489 

Table 10. The compressibility factors for CO2 at Tr =1 and Pr ranging from 0.1 to 1.2 

(Pr,Tr) Converged Solution of ODE (Eq. 15) Exact Zero of Polynomial (Eq. 11) 

(0.1,1) 0.964128 0.964065 

(0.2,1) 0.924797 0.924715 

(0.3,1) 0.881017 0.880839 

(0.4,1) 0.830740 0.830547 

(0.5,1) 0.770462 0.770080 

(0.6,1) 0.689485 0.689291 

(0.7,1) 0.101897 0.101892 

(0.8,1) 0.115920 0.115902 

(0.9,1) 0.129811 0.129800 

(1,1) 0.143728 0.143590 

(1.1,1) 0.157286 0.157278 

Table 11. The compressibility factors for CO2 at Tr =1.1 and Pr ranging from 0.1 to 1.2 

(Pr,Tr) Converged Solution of ODE (Eq. 15) Exact Zero of Polynomial (Eq. 11) 

(0.1,1.1) 0.974269 0.974166 

(0.2,1.1) 0.946889 0.946624 

(0.3,1.1) 0.917081 0.917022 

(0.4,1.1) 0.884941 0.884865 

(0.5,1.1) 0.849607 0.849418 

(0.6,1.1) 0.809578 0.809505 

(0.7,1.1) 0.763184 0.763015 

(0.8,1.1) 0.705380 0.705332 

(0.9,1.1) 0.620609 0.620568 

(1,1.1) 0.158564 0.158548 

(1.1,1.1) 0.172520 0.172510 

Table 12. The compressibility factors for CO2 at Tr =1.2 and Pr ranging from 0.1 to 1.2 

(Pr,Tr) Converged Solution of ODE (Eq. 15) Exact Zero of Polynomial (Eq. 11) 

(0.1,1.2) 0.981188 0.980975 

(0.2,1.2) 0.961105 0.961040 

(0.3,1.2) 0.940215 0.940068 

(0.4,1.2) 0.918022 0.917900 

(0.5,1.2) 0.894433 0.894328 

(0.6,1.2) 0.869155 0.869079 

(0.7,1.2) 0.841886 0.841775 

(0.8,1.2) 0.812033 0.811868 

(0.9,1.2) 0.778653 0.778517 

(1,1.2) 0.740453 0.740299 

(1.1,1.2) 0.694468 0.694423 
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Fig. 1. Graphical representation of the absolute error values of the compressibility factor for CO2 computed by 

our method at different reduced pressures and temperatures 

Conclusion 

As an unorthodox approach, we have proposed a nonlinear ODE based on the Tao-Mason 

EOS that can asymptotically converge to the compressibility factor of a given pure substance 

or mixture. The goal was to bypass the difficulties that are characteristic of the Newton-type 

polynomial root-finding algorithms. We employed the Dormand-Prince pair algorithm to 

numerically solve the aforementioned Z-factor generating ODE. Two case studies were carried 

out to demonstrate the accuracy and efficacy of our method. As it can be deduced from Sections 

2 and 3, our method formally requires polynomial deflations in the search for other 

compressibility factors, or in other words, other zeroes of the polynomial (Eq. 11), and we 

actually are not forced to perform synthetic divisions. This is a remarkable advantage if we 

consider previous root-finding algorithms that entail polynomial deflations. It is also 

worthwhile to mention that the promising approximate analytical method, namely the Adomian 

decomposition could have been applied to solve the proposed nonlinear ODE in a parametric 

manner [21-24]. Doing so, a new analytical expression for the Tao-Mason EOS in the form of 

an infinite series would have been obtained. However, the approach would require the use of 

Padé approximants to extract the asymptotics of the solution out of the infinite series. We plan 

to follow this idea in our future research. Our approach can be extended to other equations of 

state, particularly those with more complicated mathematical formulations, such as the SAFT 

EOS. 

Nomenclature 

A  Parameter of the Tao-Mason EOS (-) 

B  Parameter of the Tao-Mason EOS (-) 

C  Parameter of the Tao-Mason EOS (-) 

k  Boltzmann’s constant (J.K-1) 

b  Effective van der Waals co-volume (m3.mol-1) 

  
Temperature-dependent parameter of the Tao-Mason 

EOS 

1 2, , ,A A    Parameters of the Tao-Mason EOS 
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cT  Critical temperature (K) 

cP  Critical pressure (Pa) 

BT  Boyle temperature (K) 

BV  Boyle (specific) volume (m3.mol-1) 

1 2 3 4 5 6 7, , , , , ,k k k k k k k  Auxiliary parameters  

,x t  Indicator variables 

z  Compressibility factor (-) 
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