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The heating value of natural gas is used to determine the quality of the gas 

sample, hence accurate prediction of heating value helps in controlling the 

issue of underbilling and overbilling between a gas aggregator and an off-

taker. Moreover, the heating value of natural gas is not a fixed value and 

the accuracy of it in real-time is essential. This study was focused on the 

prediction of the Higher Heating Value (HHV) of natural gas based on 

percentage gas compositions obtained from Ghana’s offshore oil fields 

using Artificial Neural Networks (ANN), Adaptive Boost (AdaBoost), 

Extreme Gradient Boost (XGBoost), Linear Regression (LR). These 

algorithms were modelled to determine the best predictive model using 

2021 sample data on gas specifications. Eighty percent (80%) of the data 

was used for training and the remaining 20% was used for testing. The 

performance of each algorithm was evaluated using Root Mean Square 

Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage 

Error (MAPE), R2 and Adjusted R2. XGBoost performed better than all the 

other predictive models with an R2 and adjusted R2 of 91.18% and 90.93% 

respectively and RMSE, MAE, and MAPE of 1.7302, 0.5393 and 0.57% 

respectively. The incorporation of this method provides a diverse approach 

to the analysis of the pipeline dynamic results of the heating value of natural 

gas. 

 

Introduction 

Natural gas is a multi-substance fossil energy formed underneath the earth’s surface [1]. 

Methane (CH4), the largest component of natural gas constitutes a carbon (C) atom and four 

hydrogen (H) molecules [2]. Natural gas is colourless, odourless, and amorphous and gives off 

a valuable amount of energy when it undergoes complete combustion. The combustion of fossil 

fuels like coal or oil emits large quantities of harmful compounds like nitrous oxide, carbon 

dioxide and sulphur oxide. Comparatively, during the combustion of natural gas, the emission 

of sulphur oxide is negligible and that of nitrous oxide and carbon dioxide is lower, which helps 

reduce the problem of acid rain and greenhouse effects [3]. The world’s shift in energy 

preference from fossil fuels to natural gas is because natural gas serves as a cleaner source of 

energy [4]. With reference to the BP statistical review of the World Energy 2022 edition, global 
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natural gas demand grew 5.3% in 2021, recovering above pre-pandemic 2019 levels and 

crossing the 4 trillion cubic meter mark for the first time. Its share in primary energy in 2021 

was unchanged from the previous year at 24% [5]. This reveals the increasing demand for 

natural gas as a source of fuel over the years. Natural gas has evolved from being primarily 

used as local energy for heat and electricity to a more robust use in residential, industrial, and 

commercial heating globally dominating the world economic growth [6]. In the petrochemical 

industry, natural gas is used as natural industry fuel and feedstock for organic chemical industry 

processes in the production of ethylene and propylene [7]. Natural gas is also used in the 

fertiliser industry to produce ammonia. Gases such as hydrogen, sulphur, syngas, and carbon 

black can also be produced using natural gas [3, 7].  

The composition of a commingled gas and the heating value of natural gas are relevant in 

determining the quality of a natural gas substance. The heating value of natural gas is 

determined by standard laboratory measurement using a bomb calorimeter based on the mass 

rather than the volume burned [8, 9]. The heating value of natural gas is essential because it 

presents the content of energy of gas and the quality of gas [10, 11, 12]. The heating value of 

natural gas also plays an important role in the gas industry as it is used for billing purposes. 

Heating value determination is subject to the estimation of gas composition by Gas 

Chromatograph (GC) which is the most widely used instrument among instruments such as 

moisture analysers, gravitometers, and hydrogen sulphur monitors [13].  

In Ghana, natural gas is obtained from the Jubilee, TEN and Sankofa Fields. It is 

predominantly used for domestic power supply for industries, transport, and cooking. This has 

increased natural gas consumption exponentially over the decades. Over two decades, Ghana’s 

natural gas consumption has increased by 52.6%. This is the result of an increase in industrial 

and residential demands for natural gas as their source of energy. To ensure a cleaner and more 

supply of energy, the country anticipates a shift from more environmentally unfriendly fuels to 

a relatively cheaper and cleaner natural gas-based fuel for its energy supply [14]. In Ghana, 

most terminal stations along the gas pipeline network where custody transfer takes place are 

equipped with an online GC at the end of the pipeline, close to the customer or the off-taker. 

The GC is incorporated with a flow computer for the estimation of the heating value and energy 

of the natural gas; therefore an accurate estimation of the heating value solely depends on the 

proper functioning of the GC. For an online GC, in unusual situations, the GC develops faults 

due to corona (partial discharge), thermal heating and arching. This results in a wrong GC 

reading, consequently resulting in a wrong diagnosis of the gas. There are also instances where 

the auxiliaries of the GC such as the gas carrier leaks or calibration gas get in short at the gas 

stations accounting for false analysis of the composition of the gas. The uncertainty of the 

analyses from an online GC is of utmost importance to the companies that use these figures in 

energy calculations, as that forms the basis for the economical transaction between the seller 

and buyer [15]. The traditional method for estimating heating values of natural gas as proposed 

in the ISO 6976:2016 must compensate for pressure and temperature at the reference point and 

deal with the estimation of the uncertainties associated with the heating value. The estimation 

of the uncertainties associated with the heating values makes it very time-consuming and 

laborious and does not usually promise an accurate estimation due to the large set of data to be 

handled, as such a more time-friendly and less tedious predicting the heating value instead of 

depending on previous data for billing. This study seeks to propose an alternative approach to 

predict the heating values of natural gas from different oil/gas fields in Ghana using machine 

learning models.  

Machine learning techniques have been used as alternative methods in predicting the heating 

values of materials. Literature reveals its efficiency in making an accurate prediction. Many 

studies have revealed the application of machine learning in predicting Higher Heating Values 
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(HHV) of materials. Xing et al. [16] used ANN, Support Vector Machines (SVM), and Random 

Forest Regression (RFR) to predict the HHV of biomass based on their proximate and ultimate 

analyses. The authors used R2 to compare the accuracy of the models and the RFR algorithm 

performed better with R2 > 0.94. Taki and Rohani [17] used Radial Bias Function Artificial 

Neural Network (RBF-ANN), Multilayer Perceptron Artificial Neural Network (MLP-ANN), 

Support Vector Machine (SVM) and Adaptive Nero-Fuzzy Inference System (ANFIS) to 

predict the HHV of Municipal Waste (MW) for waste -to- energy evaluation. The authors used 

six different inputs which were carbon, water, hydrogen, oxygen, nitrogen, sulphur and ash. 

The results revealed that RBF-ANN can predict the HHV of MSW with higher accuracy than 

other models. Birgen et al. [18], also used ML based modelling to predict the Lower Heating 

Value (LHV) of municipal waste. In their work, the Gaussian Processes Regression (GPR) was 

used. Many other studies on using MLT in predicting Higher Heating Value (HHV) focused on 

different areas not directly related to predicting the HHV of natural gas, particularly from the 

offshore fields of Ghana. Thus, the research intends to fill this gap.  

Materials and Methods  

Data Acquisition 

An unpublished secondary data on heating values and other related parameters by the Gas 

Chromatograph were obtained from Ghana’s Offshore Oil Fields through Ghana National Gas 

Company for the prediction. Standard heating values at reference conditions of 20 °C 

temperature and 101.325 KPa were as well obtained. All data used were in their standard unit. 

 Pre-Processing of Data 

The data set was explored to check if there were abnormalities within the data. The main 

objective of the analysis was to provide a statistical description of the data, determine outliers 

within the data set to check for missing values as well as to provide correlation analysis. For 

accuracy in results, statistical description, outliers and missing values determination, and 

correlation analysis were carried out before model development. Table 1 presents the statistical 

description of the data. 

Table 1. Statistical Description of Data 

 C1 C2 C3 IC4 NC4 IC5 NC5 C6+ N2 CO2 HHV 

count 2021 2021 2021 2021 2021 2021 2021 2021 2021 2021 2021 

null 

count 
0 0 0 0 0 0 0 0 0 0 0 

mean 88.4586 5.92949 3.12121 0.34455 0.61773 0.12077 0.10087 0.07177 0.42439 0.81156 1122.318 

std 0.6599 0.40513 0.21891 0.02107 0.03888 0.01177 0.00997 0.01084 0.01052 0.08032 12.7767 

min 86.89 0 2.29 0.28 0.47 0.04 0.03 0.01 0.4 0.43 1014.73 

25% 88.05 5.85 3.01 0.33 0.6 0.11 0.1 0.07 0.42 0.8 1119.9 

50% 88.47 5.98 3.1 0.34 0.61 0.12 0.1 0.07 0.42 0.82 1122.74 

75% 88.65 6.15 3.28 0.35 0.63 0.13 0.11 0.08 0.43 0.85 1127.54 

max 91.97 6.75 4.96 0.44 0.78 0.16 0.13 0.11 0.47 1.57 1143.27 

Data Processing  

Data processing is a very important part of the modelling. This is where the dataset used for 

the prediction of the heating value of natural gas is being processed to make important 

conclusions and findings. Data processing was made up of outlier determination and fixing, 

multicollinearity test, input and output variable selection, data splitting, data normalisation, 

https://www.sciencedirect.com/topics/engineering/bias-function
https://www.sciencedirect.com/topics/engineering/artificial-neural-network
https://www.sciencedirect.com/topics/engineering/artificial-neural-network
https://www.sciencedirect.com/topics/engineering/perceptron
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model development and prediction, evaluation on training and testing dataset, and plotting of 

predicted heating value and actual heating value. 

Outlier Determination and Fixing 

In statistics, an outlier is a data point that differs significantly from other observations. An 

outlier may be due to variability in the measurement, or it may indicate the experimental error; 

the latter are sometimes excluded from the data set. An outlier can cause serious problems in 

statistical analysis. The dataset for this study was a real-time field of daily values recorded by 

a Gas Chromatograph, however, there were several outliers in the dataset which could have 

affected the prediction if not fixed. Outliers can skew the results of the model and lead towards 

wrong interpretations. To identify the outliers in the dataset, visualizations with boxplots, a 

statistical approach using interquartile ranges, and imputation of the values of the outliers were 

used. Statistically, since the data obtained from the Gas Chromatograph do not follow a normal 

distribution, the outliers were estimated using the interquartile ranges instead of Z-scores. Eqs. 

1, 2 and 3 were used to estimate the outliers from the dataset using Inter-Quartile Range (IQR) 

Approach. 

𝑄1 − 1.5 × 𝐼𝑄𝑅 (1) 

𝑄3 + 1.5 × 𝐼𝑄𝑅 (2) 

𝐼𝑄𝑅 = 𝑄3 − 𝑄1 (3) 

where Q1 is the 25th percentile or lower quartile and Q3 is the 75th percentile or upper quartile 

and IQR is the interquartile range. Values that fell outside of the range of Eqs. 1 and 2 were 

considered outliers. This was done to scale the data within a specific range for accurate 

prediction. Python function that accepts columns from the data frame and produces the outliers 

using the handy pandas was built. In resolving the outliers in the dataset, an imputation 

approach was used whereby the mean value of each parameter was determined and used to 

replace the outlier.  

Multicollinearity  

Multicollinearity exists in a dataset when there is a high correlation between two or more 

independent variables in multiple linear regression. Multicollinearity can lead to skewed or 

misleading results when a researcher or analyst attempts to determine how well each 

independent variable can be used most effectively to predict or understand the dependent 

variable in a statistical model. A statistical technique called the Variance Inflation Factor (VIF) 

was used to detect and measure the amount of collinearity in a multiple regression model. A 

VIF of 1 will mean that the variables are not correlated; a VIF between 1 and 5 shows that 

variables are moderately correlated, and a VIF between 5 and 10 will mean that variables are 

high. 

Input and Output Variable Selection 

This is where the data was segregated into two. One part was the dependent variable or 

output variable, and the other was the independent variable or predictors. In this study, the 

predictors used were methane (C1), Ethane (C2), Propane (C3), Isobutane (iC4), Normal Butane 

(n-C4), Isopentanes (iC5), Normal Pentane (nC5), Hexane (C6+), Nitrogen (N2) and Carbon 

dioxide (CO2) and the independent or output variable was   Heating Value (HV). In the coding, 

“Label” was used for the output variable which in our case is the Heating Value and “Features” 

was used for the predictors. 
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2.3.4 Data Splitting  

The data was split into training and testing. It is very important to train the dataset very well 

to make an accurate prediction. 80% of the dataset was used for training and the remaining 20% 

was used for testing. The total dataset used for the work was 2021, out of which 1617 

representing 80% were used for training and 404 representing 20% were used for testing. The 

various algorithms were trained on the training dataset and evaluated on the testing dataset to 

check accuracy.  

2.3.5 Data Normalisation 

Data Normalisation was done to scale the dataset between 0 and 1 for easy prediction. This 

scaling was done so that there would not be many outliers in the dataset. This was done to 

ensure fairness in the dataset for better prediction. In this study, one out of the many methods 

was used in normalising the dataset in (0, 1) intervals. This was the MinMax Scaler function in 

the learns pre-processing library. The MinMax Scaler works very well with data having outliers 

and preserves the relationship among the original data values. Other methods such as the 

StandardScaler do not work very well with outliers since outliers influence them when 

calculating the empirical mean and standard deviation which narrows the range of values. Eq. 

4 shows the formula for the MinMax Scaler. 

𝑌 =
𝑌𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑌𝑚𝑖𝑛

𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛
 (4) 

where: 

Y= Normalized value for the parameter (C1, C2, C3…), Yactual = Value for individual 

parameter, Ymin = Minimum Value for the parameter, Ymax = Maximum Value for the 

parameter. 

Model Development 

Different algorithms were used in the prediction of the heating value of natural gas using 

Jupyter Notebook with Python language. A total of 2021 datasets were collected from all three 

oil fields in Ghana (commingled) daily over a period of five (5) years, out of which 1617 were 

used to train the various models and 404 were used to test and evaluate the model. The 

Algorithms used in this study were Linear Regression (LR), Artificial Neural Networks (ANN), 

Adaptive Boosting (AdaBoost) and Extreme Gradient Boosting (XGBoost).  

Multiple Linear Regression 

Multiple Linear Regression (MLR) is a statistical modelling technique used to establish a 

linear relationship between a dependent variable and two or more independent variables. The 

technique involves fitting a line that best captures the relationships between the independent 

variables and the dependent variable. Fig. 1 shows the linear regression model diagram for this 

work. An MLR model is given by Eq. 5: 

Y= β0 + β1X1 + β2X2 + · · · + βkXk + ε (5) 

where: 

The slope of y depends on the y-intercept, that is, when all variables x1 to xk are zero, y will 

be β0. The regression coefficients β1 and β2 represent the change in y because of one-unit 

changes in x1 and x2, β0 refers to the slope coefficient of all independent variables and ε term 

describes the random error (residual) in the model. The model coefficients (β0, β1, βkXk) are 

estimated by minimising the sum of squared errors of the regression model using Eq. 6 
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𝑚𝑖𝑛(∑[ Y −  (β0 +  β1X1 +  β2X2 + · · ·  + βkXk )  ]2)

𝑘

𝑖 = 1

 (6) 

The resulting model can be used to predict the values of the dependent variable given some 

independent variables. The MLR model was set up for training by importing the LR model from 

sklearn.linear package. The training was done using the training dataset (consisting of 10 

features with 20 records representing 80% of the dataset) and training labels (HHV). The 

training was completed in 58.7 milliseconds. 

 
Fig. 1. Diagram of a Linear Regression Model 

 

Artificial Neural Networks (ANN) 

Artificial Neural Network model followed a sequential model architecture as in Fig. 2 with 

an input, hidden and output layer. An artificial neural network (ANN) can be represented 

mathematically using Eq. 7 for a single neuron or node: 

𝑦 =  𝑓(∑ 𝑤𝑖 . 𝑥𝑖  +  𝑏)

𝑛

𝑖 = 1

 (7) 

where: 

y represents the output of the neuron, f is the activation function applied to the weighted sum 

of inputs, ∑ 𝑤𝑖 . 𝑥𝑖  +  𝑏  𝑛
𝑖 = 1   is the weighted sum of the input values (𝑥1, 𝑥2, 𝑥3 . . . 𝑥𝑖) 

multiplied by their corresponding weights (𝑤1, 𝑤2, 𝑤3, … 𝑤𝑖), b is the bias term added to the 

weighted sum and n is the number of input connections to the neuron. The activation function 

introduces non-linearity to the neuron's output, allowing the neural network to learn complex 

patterns in data. Commonly used activation functions include sigmoid (σ), hyperbolic tangent 

(tanh), and rectified linear unit (ReLU). 
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Fig. 2. Diagram of a Deep Neural Network 

The model consisted of an input layer with 180 neurons, two hidden layers with 480 and 425 

neutrons. A dropout layer with 0.2 dropout was applied between the input layer and hidden 

layers. The output layer also had a single neuron to output a single prediction. The input and 

hidden layers used the ReLU activation while the output used a linear activation. Fig. 3 presents 

the deep learning network model summary. 

 

Fig. 3. Deep Neural Network Model Summary 

The model compilation step is a crucial preparatory step that optimises the network's 

configuration for efficient training and metrics reporting. This step involves:  

i. Choosing an optimizer algorithm, such as SGD, Adam, or RMSprop, to adjust the 

weights of the network during training for minimising the loss function. 

ii. Specifying the Loss Function: Defining the loss function that quantifies the difference 

between predicted and actual outputs. The choice of loss function depends on the 

problem type (classification, regression, etc.). 
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iii. Defining Evaluation Metrics: Setting evaluation metrics like accuracy, precision, or 

recall to monitor the network's performance during training without directly 

influencing the training process. 

iv. Compiling the Model: Using the compile () method to combine the optimizer, loss 

function, and evaluation metrics, preparing the model for efficient training. 

After compilation, the model was primed for efficient training using the fit () method. This 

step ensured that the ANN was equipped with the right optimization settings, loss function, and 

metrics for successful training and convergence, ultimately enhancing the model's predictive 

capabilities. Table 2 shows the model compilation for ANN. The model was trained on the 

training set (consisting of 10 features with 1617 records) and training labels (HHV values), for 

150 epochs. The training was completed in 42.1 seconds. Fig. 4 presents the model training 

flowchart for ANN. 

Table 2. ANN Model Compilation Configuration 

Optimizer Loss Metrics Epochs 

Adam Mean Squared Error MAE, Root Mean Squared Error 150 

 

Fig. 4. Flowchart of a Deep Neural Network Training Process 

Adaptive Boost 

Adaptive Boost (AdaBoost) is a popular machine learning algorithm that is used for 

classification and regression problems. It is an ensemble learning method that combines 

multiple weak learners (base classifiers) to form a strong classifier. AdaBoost is a boosting 

algorithm, which means it works by increasing the weight of samples that are misclassified by 

the previous base classifiers. The model was trained by fitting a Regressor on the provided 

dataset and then fitting additional copies of the regressor on the same dataset where the weights 

of instances were adjusted according to the error of the current prediction. As such, subsequent 

regressors focused more on wrongly predicted data points to make better predictions. 

Hyperparameter tuning was performed to provide the best model performance. Bayesian 

Optimization was used to obtain the most optimal hyperparameters, after several different 

ranges were explored, the most optimal combination was chosen to train the model. Fig. 5 
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shows the flowchart for the Bayesian optimization. Table 3 presents the values of the optimal 

hyperparameters for the Adaptive Boosting Model. 

 

Fig. 5. Flowchart of Bayesian optimization 

Table 3. Optimal hyperparameters for AdaBoost Model 

Number of Estimators Random State Learning Rate 
459 27 0.03 

At the initial stage of the algorithm, the weights of the samples were initialised to be equal, 

which means that each sample had the same importance. The weights of the samples were 

updated at each iteration of the algorithm. A weak learner was a base classifier that was trained 

on the current sample weights. After training the weak learner, the sample weights were updated 

to reflect the performance of the weak learner. The samples that were wrongly predicted by the 

weak learner were given higher weights, while the samples that are correctly predicted are given 

lower weights. The weight of the weak learner was calculated based on its accuracy. The weight 

is given by Eq. 8: 

𝛼𝑡 =
1

2
𝑙𝑛 𝑙𝑛 (

1 − 𝜖𝑡

𝜖𝑡
) 

(8) 

where: t is the iteration number and 𝜖𝑡 is the misclassification rate of the weak learner. The final 

classifier is updated by combining the weighted predictions of the weak learners. The prediction 

for a sample is given by Eq. 9: 

𝑓(𝑥) = sign (∑ 𝛼𝑡

𝑇

𝑡=1

ℎ𝑡(𝑥)) 
(9) 
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where, T is the number of weak learners, ℎ𝑡(𝑥) is the prediction of the 𝑡𝑡ℎ weak learner, and 

sign is the sign function that returns 1 for positive values and -1 for negative values. The 

algorithm repeats the second and fifth steps until a stopping criterion is met, such as a maximum 

number of iterations or a minimum accuracy threshold. 

Extreme Gradient Boost 

Extreme Gradient Boost (XGBoost) is an optimised version of the gradient boosting 

algorithm. It is a scalable machine learning algorithm that is widely used for both regression 

and classification problems. XGBoost is a tree-based algorithm that works by constructing an 

ensemble of decision trees that are trained in a sequential manner to improve predictive 

performance. Fig. 6 shows the model structure for an XGBoost. 

Hyperparameter tuning was performed to provide the best model performance. Bayesian 

Optimization as shown in Fig. 5 was used to obtain the most optimal hyperparameters, after a 

number of different ranges were explored, the most optimal combination was chosen to train 

the model.  
Table 4. Optimal Hyperparameters for XGBoost Model 

Number of Estimators Random State Max Depth 
92 52 52 

 

Fig. 6. Diagram of the Model Structure of XGBoost 

At the initial stages of the algorithm, the base learners were initialised with a constant value, 

such as the mean or median of the target variable. A decision tree model was trained on the 

residuals (difference between the predicted values and the true values) of the previous base 

learners. The decision tree model was trained to minimise the objective function, which is 

defined as the sum of the squared residuals. The predictions of the decision tree model were 

added to the predictions of the previous base learners to form a new set of base learners. The 

updated base learners formed the new residuals for the next iteration. The weight of the tree 

model was calculated based on the reduction in the objective function after adding its 

predictions to the base learners. The weight of the tree model is given by Eq. 10: 

𝜂 = 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 
(10) 
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Objective Function = ∑ 𝐿(𝑦𝑖, 𝑦�̂� + 𝜂𝑓(𝑥𝑖))

𝑛

𝑖=1

 

where: L is the loss function, 𝑦𝑖 is the true value of the 𝑖𝑡ℎ sample, 𝑦�̂� is the prediction of the 

base learners for the 𝑖𝑡ℎ sample, and 𝑓(𝑥𝑖) is the prediction of the decision tree model for the 

𝑖𝑡ℎ sample. The algorithm repeats the second and fifth steps until a stopping criterion is met, 

such as a maximum number of iterations or a minimum error threshold. 

Evaluation on Training and Testing Datasets 

The models were evaluated on the training and testing datasets using Root Mean Square 

Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), R-

Squared (R2) and Adjusted R-Squared. These performance evaluation tools have been used in 

earlier studies and can be determined using Eqs. 11-15 [19, 20]. After model development and 

evaluation, a plot of the predicted heating value and actual heating value was made, and a line 

of best fit was drawn to determine the equation for prediction. 

Root Mean Square Error (RMSE) 

The Root Mean Square Error (RSME) measures the standard deviation of the errors. This 

metric is very important in prediction as it tells how well a regression model can predict the 

value of a response variable in absolute terms. The predicted heating values from each model 

were exported to excel to estimate the RMSE for both training and testing datasets using Eq. 

11. 

𝑅𝑆𝑀𝐸 √
1

𝑛
∑(𝐻𝐻𝑉𝑎𝑐𝑡 − 𝐻𝐻𝑉𝑝𝑟𝑒)

2
𝑛

1

    (11) 

where n is the number of data samples, HHVpre predicted heating value and HHVact is the actual 

heating value.  

Mean Absolute Error (MAE) 

The Mean Absolute Error (MAE) is the average of the absolute difference between the actual 

and predicted values in a dataset. The predicted heating values from each model were exported 

to excel to estimate the Mean Absolute Error for both training and testing datasets using Eq. 

12. 

𝑀𝐴𝐸 =  
1

𝑛
∑|𝐻𝐻𝑉𝑎𝑐𝑡 − 𝐻𝐻𝑉𝑝𝑟𝑒|

𝑛

1

 
(12) 

where MAE is the mean absolute error, n is the number of data samples, HHVpre predicted 

value and HHVact is the actual value. 

Coefficient of Determination (R2) 

The Coefficient of Determination (R2) represents the proportion of the variance in the 

dependent variable (Heating Value) which is explained by the linear regression model. R2 is 

always less than 1. The predicted heating values from each model were exported to excel to 

estimate the R2 for both training and testing datasets using Eq. 13. 
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𝑅2 = 1 −
∑ (𝐻𝐻𝑉𝑎𝑐𝑡 − 𝐻𝐻𝑉𝑝𝑟𝑒)

2𝑛
1

∑ (𝐻𝐻𝑉𝑎𝑐𝑡 − 𝐻𝐻𝑉𝑎𝑣𝑝)
2𝑛

1

 
(13) 

where n is the number of data samples, HHVpre predicted heating value, HHVact is the actual 

value and HHVavp is the average of the predicted heating value. 

Mean Absolute Percentage Error (MAPE) 

Mean Absolute Percentage Error is the measure of the prediction accuracy of a forecasting 

method in regression analysis. MAPE is always in percentage (%). The predicted heating values 

from each model were exported to excel to estimate the MAPE for both training and testing 

datasets using Eq. 14. 

𝑀𝐴𝑃𝐸 =

100
𝑛

∑ |𝐻𝐻𝑉𝑎𝑐𝑡 − 𝐻𝐻𝑉𝑝𝑟𝑒|𝑛
1

𝐻𝐻𝑉𝑎𝑐𝑡
              (14) 

Adjusted R2 

Adjusted R2, is a modified form of the coefficient of determination (R2) which is mainly 

adjusted for the number of independent variables in the model. Adjusted R2 will always be less 

than or equal to R2. In this project, the predicted heating values from each model were exported 

to excel to estimate the Adjusted R2 for both training and testing datasets using Eq. 15. 

𝐴𝑑𝑗 𝑅2 = 1 −
(1 − 𝑅2)(𝑛 − 1)

𝑛 − 𝑘 − 1
            (15) 

where Adj R2 is the Adjusted R2, n is the number of data samples, k is the number of predictors, 

and R2 is the sample R2. 

Results and Discussion 

Linear Regression 

The model's output for Linear Regression is reported in this part as results. Fig. 7 displays 

the line plot created using linear regression for the actual and anticipated heating levels. From 

Fig. 1, the model was not able to accurately predict heating values lower than 1 110 BTU/SCF 

because the data used had values higher than 1 110 BTU/SCF. As a result of this, the error 

margin for this model increased. Fig. 8 shows the scatter plot for Actual HHV and Predicted 

HHV in the Linear Regression Model. A line of best fit was drawn with an R2 value determined. 

An equation for prediction was also generated from the model. Eq. 16 is the linear equation 

generated for the linear regression model. 

𝐻𝐻𝑉  =  1116.7221 − 2.8079 × 𝐶1  −  1.4472 × 𝐶2  +  5.2744 × 𝐶3 
+  1.0681 × 𝐼𝐶4 − 1.1064 × 𝑁𝐶4 + 4.2370 × 𝐼𝐶5 + 0.2595 × 𝑁𝐶5 
+ 2.8699 × 𝐶6 + + 0.5632 × 𝑁2 − 0.6045 × 𝐶02                     

(16) 

where (CO2, N2, C1 … C6) is the composition of the gas sample. 
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Fig. 7. Line Plot for Actual and Predicted HHV in Multiple Linear Regression 

 

Fig. 8. Scatter Plot for Actual HHV and Predicted HHV in Linear Regression 

 

From Fig. 8, it is seen that most of the values were scattered, and this led to a large difference 

between the predicted HHV and the actual HHV. Table 5 shows the metric values obtained for 

Linear Regression Model for both the training and testing dataset. 

Table 5. Training and Testing Results for Linear Regression Model 

Linear 

Regression 

Model 

RMSE MSE MAE Adjusted R2 MAPE R2 

Training 

2.0116 4.0466 1.1343 0.8641 0.53% 0.8650 

Testing 

2.5343 6.4224 1.2971 0.8055 0.55% 0.8108 
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From Table 5, the errors for the training dataset were lower than that of the testing dataset. 

In the training, An R2 of 86.50% was recorded which shows that the predictor variables were 

able to explain 86.50% of the variations in the output variable (heating value), whereas in the 

testing the value of R2 decreased to 81.08% which shows that the model developed can only 

explain about 81.08% of the output variable.  

AdaBoost Regression 

The results obtained from the AdaBoost Regression model are presented in this section. Fig. 

9 shows the line plot obtained for the actual heating value and predicted heating value using 

AdaBoost Regression Model. 

. 

Fig. 9. Line Plot for Actual and Predicted HHV in AdaBoost Regression Model 

From Fig. 9, the predicted values and the actual values were not very close together and this 

resulted in a high error margin between the predicted HHV and the actual HHV. Fig. 10 shows 

the scatter plot for Actual HHV and Predicted HHV in the AdaBoost Regression Model. A line 

of best fit was drawn with an R2 value determined. From Fig. 10, it is evident that most of the 

points are away from the line of best fit hence there is a high error since the predicted HHV and 

the actual HHV are not close to each other. Table 6 shows the metric values obtained for the 

AdaBoost Regression Model for both the training and testing dataset. 
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Fig. 10. Scatter Plot for Actual HHV and Predicted HHV in AdaBoost Regression 

Table 6. Training and Testing Results for AdaBoost Regression Model 

AdaBoost 

Regression Model 

RMSE MSE MAE Adjusted R2 MAPE R2 

Training 

1.9521 3.8105 1.4356 0.8720 0.52% 0.8729 

Testing 

2.0230 4.0926 1.4559 0.8761 0.55% 0.8794 

From Table 6, the errors for the training dataset were lower than that of the testing dataset. 

In the training, an R2 of 87.29% was recorded which shows that the predictor variables were 

able to explain 87.29% of the variations in the output variable (heating value) in the training of 

the model and this depicts that the model performed very well in the training, whereas in the 

testing the value of R2 increased to 87.94% which shows that the model developed can only 

explain about 87.94% of the output variable which is better than that of the Linear Regression. 

Fig. 11 shows the feature importance of the AdaBoost Regression Model. It can be seen from 

Fig. 11 that, C3 had the highest importance in the prediction of heating value for the AdaBoost 

Model whereas CO2 had the least importance. This is because, the presence of CO2 in a gas 

mixture reduces the heating value of the gas. The data used had a very low percentage of the 

CO2 in the gas stream and this makes it have a low influence on the heating value. Also, C3 has 

a very high influence on heating value, this is because the heating value of propane (C3) is high 

and having more propane in the gas stream will affect the heating value of the mixture. The gas 

sample had more propane in the mixture than other heavier fractions (C3+). 
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Fig. 11. Feature Importance for the AdaBoost Regression Model 

Extreme Gradient Boosting Regressor Model (XGBoost) 

The results obtained from the XGBoost model are presented in this section. Fig. 12 shows 

the line plot obtained for the actual heating value and predicted heating value using XGBoost 

Regressor Model. 

 

 

Fig. 12. Line Plot for Actual and Predicted HHV in XGBoost Regressor Model 

From Fig. 12, the predicted values and the actual values were a little close together as 

compared to the AdaBoost Regression and Linear Regression because this model gave out the 

best (R2) value amongst all other models and the least error. Fig. 13 shows the scatter plot for 

Actual HHV and Predicted HHV in the AdaBoost Regression Model. A line of best fit was 

drawn with an R2 value determined. From Fig. 13, most points lay on the line of best fit which 

in turn increased the R2 for this model and hence made it a better predictor. Table 7 shows the 

metric values obtained for the XGBoost Regressor Model for both the training and testing 

dataset. 
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Fig. 13. Scatter Plot for Actual HHV and Predicted HHV in XGBoost Regressor Model 

Table 7. Training and Testing Results for XGBoost Regressor Model 

XGBoost 

Regressor 

RMSE MSE MAE Adjusted R2 MAPE R2 

Training 

0.2761 0.0763 0.0234 0.9974 0.54% 0.9975 

Testing 

1.7302 2.9934 0.5393 0.9093 0.57% 0.9118 

From Table 7, the errors for the training dataset were lower than that of the testing dataset. 

In the training, an R2 of 99.75% was recorded which shows that the predictor variables were 

able to explain 99.75% of the variations in the output variable (heating value) in the training of 

the model and this means that the model performed very well in the training, whereas in the 

testing the value of R2 decreased to 91.18% which shows that the model developed can only 

explain about 91.18% of the output variable which is better than that of the AdaBoost Regressor 

Model. Fig. 14 shows the feature importance in the XGBoost Regressor Model. It can be seen 

from Fig. 14 that, C3 had the highest importance in the prediction of heating value for the 

XGBoost Model whereas CO2 had the least importance. 

 
Fig. 14. Feature Importance for the XGBoost Regressor Model 
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Artificial Neural Networks (ANN) 

The results obtained from the Artificial Neural Network (ANN) model are presented in this 

section. Fig. 15 shows the line plot obtained for the actual and predicted heating values using 

Artificial Neural Networks. 

 
Fig. 15. Line Plot for Actual and Predicted HHV in ANN Model 

From Fig. 15, the ANN model gave a moderate prediction for the heating values which were 

close to the actual heating values. Fig. 16 shows the scatter plot for Actual HHV and Predicted 

HHV in the Artificial Neural Networks Model. A line of best fit was drawn with an R2 value 

determined. From Fig. 16, it is seen that most of the points lie on the line of best fit but not as 

good as compared to other models. Table 8 shows the metric values obtained for the ANN 

Model for both the training and testing dataset. 

 

Fig. 16. Scatter Plot for Actual HHV and Predicted HHV in ANN Model 
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Table 8. Training and Testing Results for ANN Model 

ANN Model 

RMSE MSE MAE Adjusted R2 MAPE R2 

Training 

0.8366 0.6999 0.3781 0.9789 0.03% 0.9790 

Testing 

1.1588 1.3425 0.6149 0.8229 0.05% 0.8273 

From Table 8, the errors for the training dataset were lower than that of the testing dataset. 

In the training, an R2 of 97.90% was recorded which shows that the predictor variables were 

able to explain 97.90% of the variations in the output variable (heating value) during the training 

of the model and this means that the model performed very well in the training than in testing, 

whereas in the testing the value of R2 decreased to 82.73% which shows that the model 

developed can only explain about 82.73% of the output variable. Fig. 17 shows the training and 

validation loss for ANN Model 

 
Fig. 17. Training and Validation Loss in ANN Model 

Comparison of Models Used 

Tables 5, 6, 7 and 8 show the metric values obtained for all four models. Comparatively, all 

four models performed better during the training than the testing of the data. A model with the 

least error is preferable since the estimation of heating value plays a vital role in the economics 

of the industry. For a model, the lower the RMSE, MAE, and MAPE, the higher the accuracy 

of the model. The model with the lowest RMSE was XGBoost regressor and this gave it a very 

good R2 value compared to the other model. The R2 value simply defines how the independent 

variables can explain the variations in the dependent variable. XGBoost gave an R2 of 99.75% 

and 91.18% respectively for both training and testing, and this simply means that in training, 

XGBoost was able to explain almost all the variations in the heating value and for testing, 91% 

of variations were accounted for which is a good score.  

Conclusion 

An accurate prediction model is needed in Ghana’s gas industry to predict the heating value 

and control issues with overbilling and underbilling between aggregators and off-takers in the 
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event of faulty GC. This paper offers an alternative approach in predicting the heating value of 

natural gas from Ghana’s oil fields using machine learning techniques. After thorough 

experimentation, it was observed that Artificial Neural Network, AdaBoost Regressor, 

XGBoost Regressor, and Linear Regression can be used to forecast the heating value with an 

accuracy (R2) of 82.73%, 87.94%, 91.18%, and 81.08%, respectively. In the analysis, XGBoost 

Regressor performed better with a high accuracy (R2) of 91.18% and the least error amongst all 

other models hence would be the best fit at as a machine learning model for evaluating the 

heating value of a gas stream in the event of the GC failing. The R2 value simply defines how 

the independent variables can explain the variations in the dependent variable (HV). The Linear 

Regression model showed the least results amongst all models however, it can be used in 

prediction with 81% accuracy. The mathematical formula obtained for linear regression can be 

used for predicting the heating value of natural gas by accounting for the error. For most models, 

propane (C3) played the highest role in predicting the heating value and CO2 recorded the least 

contribution. This is because the presence of CO2 in a gas mixture reduces the heating value of 

the gas. The data used had a very low percentage of the CO2 in the gas stream and this made it 

have a low influence on the heating value. Also, C3 has a very high influence on heating value, 

this is because the heating value of propane (C3) is high and having more propane in the gas 

stream will affect the heating value of the mixture.  

Nomenclature 

AdaBoost Adaptive Boost  

ANFIS Nero-Fuzzy Inference System  

ANN Artificial Neural Network 

GC Gas Chromatograph  

GPR Gaussian Processes Regression  

HV Heating Value 

HHV Higher Heating Value  

HHVact Actual Heating Value 

HHVpre Predicted Heating Value 

HHVavp Average of the Predicted Heating Value. 

LR Linear Regression  

MAE Mean Absolute Error 

MAPE Mean Absolute Percentage Error 

MP-ANN Multilayer Perceptron Artificial Neural Network  

RBF-ANN Radial Bias Function Artificial Neural Network 

RMSE Root Mean Square Error  

SVM Support Vector Machines  

XGBoost Extreme Gradient Boosting Regressor Model  

VIF Variance Inflation Factor  
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