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Nowadays, rotating packed beds (RPBs) have been adopted in the many 

chemical processes such as absorption, desorption, distillation, and etc. Due 

to the complex structure of RPBs, Computational Fluid Dynamic (CFD) is 

adopted for analyzing air-water flow in the RPB. In this work, increasing 

nozzle from 2 to 8 on the behavior of air and water flows was investigated 

and validated with the experimental data with deviations less than 14%. The 

obtained results of RPB with packing and baffles demonstrated that 

increasing nozzle from 2 to 6 increased air velocity vectors. Also, increasing 

nozzle from 2 to 6 in the RPB with packing uniformed the water velocity 

on the rotor and housing. In the end, RPB with baffles increased momentum 

of water velocity vectors and velocity gradient on the rotor and housing. 

The obtained results showed that the RPB with 6 nozzles have the uniform 

air flow pattern rather than other nozzle design. Also, in the RPB with 

baffles; flooding occurred in all sections of the RPB with 8 nozzles. 

Furthermore, velocity vectors of the outer edge rotor were larger than the 

inner edge rotor in the RPB with packing and baffles. 

Introduction 

Nowadays, RPB known as high-gravity devices have been extensively paid attention by 

chemical engineering. RPBs have lower volume and less operating cost than the conventional 

packed beds [1-7]. RPBs was invented by Ramshaw and Malinsow in 1981 [8]. RPBs can 

exploit centrifugal force up to several hundred times greater than the gravitational force. So, 

under the high centrifugal field of the RPB, the thin liquid films and small droplets are formed, 

causing exhaustive interface between gas-liquid [2, 5, 6]. The mass transfer coefficient in the 

RPB was found to be 1-3 times that conventional packed beds [9, 10]. Owing to the high mass 

transfer coefficient and the plug flow pattern in the RPBs, reaching the steady-state take a little 

time in these reactors [11]. Currently, the RPBs have many applications in many chemical 

processes, e.g., absorption, desorption, distillation, synthesis of Nano-fibers of aluminum 

hydroxide, combined photolysis and catalytic ozonation of dimethyl phthalate [7, 12-17]. 

Owing to, flooding in the RPBs occur at high fluid flows rather than conventional packed beds, 

RPBs can be utilized at high gas flow rates [5, 18, 19]. On the other hands, Pressure drop in 

RPBs is higher than the conventional packed beds. Thus, the energy consumption is larger than 

the conventional packed beds [20-22]. By using centrifugal force can be increased interface 
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areas between gas and liquid; the liquid is converted to spray in the RPBs like to spray dryer. 

Many researchers examined hydrodynamic parameters as experimental or simulation in the 

RPBs such as; Sung et al experimentally investigated the operating variables such as; gas flow 

rate, liquid flow rate, rotational speed of the pressure drop and mass-transfer. Their finding 

demonstrated that gas flow rate and rotational speed had a linear effect on the pressure drop and 

liquid flow rate had a little influence other one, on the pressure drop [5]. Keyvani et al 

considered the pressure drop in the RPB experimentally. They showed that dry-bed and wet- 

bed pressure drop were proportional to the square rotational speed as same as gas flow rate [23]. 

Lin et al considered the pressure drop and mass-transfer in the RPB experimentally. They 

understood, the RPB with blade packing’s had lower pressure drop and larger mass transfer 

than the random and structure packings [24]. Yang et al investigated monophase flow in the 

RPB. They observed that inlet velocity influenced on the radial velocity and it was not 

influenced by the packing rotation. Also, rotational speed influenced on the tangential velocity 

and it was a key factor distribution fluid flow in the RPB [25]. Lierena et al surveyed the 

different feeding configuration of single-phase flow in the RPB. The obtained results 

demonstrated that gas injection placed on the top rotor, reduced gas tangential velocity.  Their 

results showed that maldistribution of gas circling in the RPB [26]. Hamedi et al showed that 

three-dimensional steady state single phase flow in the RPB. The results revealed that tangential 

velocity vectors have the majority contribution in the velocity field of the packed bed section. 

Also, axial velocity vectors have the minor contribution to the velocity field in the housing 

section [27]. Martinez et al considered three-dimensional water-SO2 flow in the RPB. Theirs 

finding showed that rotational packing influenced the So2 flow distribution in the RPB. Also, 

it has not influenced on the water velocity field [28]. Shi et al examined the effect of rotational 

packing on the liquid flow in the RPB. They observed that at high rotational speeds, the liquid 

droplet diameter was dramatically smaller than the droplets at low rotating speeds. Furthermore, 

the addition static baffles between the layers of packing caused smaller liquid droplet. 

Therefore, the maldistribaution of liquid in the local area of packing could be diminished by 

increasing rotational speed [4]. Xie et al described the 2D CFD model of liquid flow in the 

RPB. The obtained results   indicated that increasing rotational speed dramatically decreased 

liquid hold up and increased the degree of the liquid dispersion. Also, the liquid jet velocity 

slightly increased the liquid hold up [29]. YuGuo et al examined the liquid flow pattern such as 

film flow, droplet flow, pore flow within the reactors as a 2D and 3D. They revealed that the 

liquid maldistrubation could be countered by increasing rotating speed or the inlet velocity 

liquid. Also, the results revealed that liquid velocity strongly depended on the liquid inlet 

velocity [30]. Liu et al investigated liquid flow pattern in the outer cavity zone in the RPB with 

CFD and high-speed photography technology. The obtained results revealed that the liquid 

distribution in the outer cavity zone was chaotic. Also, liquid ligaments and droplets were not 

in every position of the packing outlet edge. The average droplet velocity in the outer cavity 

zone linearly increased with the increasing of the rotational speed, while liquid initial velocity 

did not influence the average velocity [31]. Lu et al illustrated the new model was based on the 

Kołodziej high porosity wire screen one-phase porous media model gas- liquid flow in the RPB. 

Unfortunately, there are no suitable porous media models that accurately describe the drag force 

between the gas and liquid, the gas and solids and the liquid and solids due to the high porosity 

and the stacked wire screen packing used in RPBs. So, the new model was presented. The new 

model was proposed for the Eulerian simulation of the gas-liquid two-phase flow in RPBs. They 

compared theirs new model with the current porous media models for traditional spherical or 

structured slit packed beds, according to the Attou, Lappalainen, Iliuta and Zhang models. 

Theirs finding revealed that the new model was very accurate for predicting the liquid flow in 

the RPB [32]. 
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Lee et al modeled the RPB for the absorber and a stripper to carbon capture.  They're fining 

was validated with published steady-state experimental data.  The simulated result showed that 

minimizing the total energy of the MEA process [33]. 

Wang et al investigated the influence of micro-mixing efficiency during co-precipitation 

reaction in the RPB. The obtained result showed that the MOx-CeO2 (M = Cu, Co, Fe) catalysts 

prepared in the RPB reactor featured more M-O-Ce species. Also, 1.3 – 1.4 times concentration 

of oxygen vacancy more than those prepared in a stirred tank reactor [34]. 

Abolhasani et al investigated rotational speed, liquid flow rate and the volumetric ratio in 

the RPB reactor equipped with angled blade packings and high-frequency ultrasonic 

experimentally. The obtained results showed that the segregation index decreased as the 

rotational speed and liquid flow rate increased. Also, Blade packing with an angle of 45° has 

had the greatest effect on enhancing the micro mixing efficiency. Their findings demonstrated 

that the use of angled blade packing had a much greater effect of enhancing the micro mixing 

efficiency rather to the ultrasound [35]. 

Overall, many literatures investigated analysis single phase flow, the multi-phase flow 

velocity field and many hydrodynamic parameters such as pressure drop, liquid hold up in the 

RPB, and etc. So, scarce researchers examined the effect of nozzle numbers on the flow 

patterns. Therefore, the understanding of distribution liquid inlet in these types of reactors is 

scarce.  In this paper, liquid inlet distribution in a 3D RPB with CFD is performed. The main 

object of this paper is to survey the effect 2 to 8 nozzles of water inlet on the behavior velocity 

field of air -water phase flow in the RPB with packing and with baffles.  

CFD simulation 

The Geometry of the RPB and Grid Refinement 

Fig. 1 describes the sketch of the RPB. The RPB was consisted of two parts, rotor and 

housing which rotor is moved by a driving motor and housing is stationary. During the process; 

gas stream fed to the RPB from the stationary wall of the housing. Owing to the pressure 

gradient; the gas moved in the radial direction of the rotor.  At the end, the gas would exhaust 

from the top of the RPB. 

 
Fig. 1. Schematic of the RPB 

The water flow rate was streamed to the rotor from the liquid distributor. Water flow sprayed 

by the liquid distributor. So, nozzles were mounted on it. The air and water streams contacted 

at the radial direction in the RPBs. The water streamed in the rotor by centrifugal force that was 

higher than the gravitational force.  Water streams were collected at the static housing and 

eventually would be expelled from the bottom of the RPBs [1, 4, 5]. Two disks were set 2cm 

apart. The blade packing and baffles have been built from stainless steel mesh. The blade 
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packing was mounted on the bottom disk and the blade baffles were fixed on the top disk, 

respectively. In this paper, 40 blade packing, and 16 blade baffles were used for the analysis 

two- phase flows in the RPB. Three layers of the blade packing and two layers of the blade 

baffles were mounted on the RPB; 8, 16, 16 for the packing and 8, 8 for the blade baffles, 

respectively. The inner and outer radius of the rotor was 1.8, and 7.8 cm; respectively. The 

center distance between layers of the blade packing was set 1.2 cm. The blade packing has 

values with the radial width, and axial height of 1.2, and 1.8 cm; respectively. Also, the blade 

baffles have values with the radial width, and axial height of 0.6, and 1.5cm; respectively. The 

liquid distributor has 6 nozzles with diameter values of 0.50 mm for each nozzle. The porosity 

of any blade packing was used 0.99. In this work, RPB with blade packing is inspired RPB with 

packing. Also, RPB with blade packing that baffles fixed between layers of packing is inspired 

RPB with baffles [5]. Fig. 2 shows the three-dimensional structure and mesh structure of RPB 

with blade packing and baffles. Fig. 3 shows the schematic of nozzle numbers in the RPB. The 

simulation was performed with Ansys fluent16.0.  

 
(a) 

 
(b) 

Fig. 2. 3D structure of the RPB with blade packing and baffles (a); 3D mesh structure of the RPB with blade 

packing and baffles from the top view (b) 
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Fig. 3. Schematic of Nozzle numbers in the RPB; 2Nozzel numbers (a), 4Nozzel numbers (b), 6Nozzel numbers 

(c), 8 Nozzle numbers (d) 

Mesh Independency 

To simulate, the best mesh elements should be obtained. Then, mesh independence was 

investigated. Many types of mesh elements were examined. At the end, the RPB with packing, 

by 691113 mesh elements and node 704930 was used. Also, the RPB with baffles by 757025 

mesh elements and node 718246 was used. To simulate, the best mesh elements should be 

attained. So, mesh independence is examined. To this, five mesh elements are investigated. 

RPB without baffles, mesh 1 with 148829 elements, mesh 2 with 167664 elements, mesh3 with 

691113 elements, mesh 4 with 763336, and mesh 5 with 797552 elements was investigated. 

Also, RPB with baffle, mesh 1 with 638065 elements, mesh 2 with 757025 elements, mesh 3 

with 780364 elements, mesh 4 with 736541 elements, and mesh 5 with 615384 elements are 

investigated; respectively. Owing to, the difference percent of pressure drop in the RPB without 

baffle between mesh 2, 3, 5 was lower than 0.07. So, mesh 3 with 691113 elements, was chosen. 

Also, the difference percent of pressure drop between mesh 2, 3, 4 in the RPB with baffle was 

lower than 0.12. So, mesh 2 with 757025 elements was chosen; respectively. Fig. 4 shows mesh 

independence in the RPB with and without baffle. 

 

Fig.4. the mesh independence in the RPB; without baffle (a), and RPB with baffle (b) 
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Governing Equations 

Simulation two-phase flows in the RPB was considered. Then, two kinds of momentum 

equation were solved. Due to, flows in the RPB have the high-speed rotating flows, flows 

involving porous media, the PRESTO Scheme was used. Also, an interpolation scheme with 

PRESTO technique was used. In this paper, the mixed model as a Eulerian-Eulerian method is 

used to simulate two-phase flows in a rotating packed bed. Also, the single reference frame 

(SRF) model was used. Owing to, flows rotation in the RPB; The realizable k-𝜀 model was 

adopted. owing to, high Reynolds number of air and water flows in the present study, the flow 

for the system was considered turbulent. So, besides the continuum and momentum equations, 

turbulence equations were also considered. The continuity equation for the mixture is as follow. 

   . 0m m m
t
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  
(1) 

where, m  , 𝜌𝑚 are average velocity and average density mixture; respectively. These 

parameters obtained with Eqs. 2 and 3; respectively as follow. In these equations 𝛼𝑘 is the 

volume fraction of phase k. 
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Also, the momentum equation is obtained by Eq. 4. That n is a number of phases and F  is 

volume force.  Furthermore, the  𝜇𝑚 is viscosity mixture that obtained with in Eq. 5.  c𝑘    is the 

mass fraction of phase k that attained with Eq. 6. The release velocity and relative velocity are 

coupled by Eq. 7.  
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 That relative velocity is obtained within Eq. 8. In this equation, 𝜏𝑝  is relax time of particle 

that obtained with Eq. 9. Also, acceleration is extracted with Eq. 10.  The release speed is 

presented by Eq. 11.  Volume fraction of Second phase p was present with Eq. 12. 
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(12) 

Also, the transport equation for the turbulent kinetic energy, k and the dissipation rate, 𝜀,  in 

the realizable k-𝜀 model is presented with Eq. 13, Eq. 14 as follow [36]. 
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Also, 𝜎𝑘 and 𝜎𝜀 are Prandtl numbers. Gk and Gb generation of turbulent kinetic energy. In 

the simulation, the air was considered as a continuous phase, and water as a dispersed phase. 

The finite volume discretized equations were solved. Coupled algorithm was used for velocity-

pressure coupling, and second-order upwind scheme discretization method were employed to 

increase the precise of the results. In this work, the RPB operated in the range of rotational 

speed at 600-1000 rpm, inlet air flow rate of 10-40 lit/min, inlet water flow rate of 0.1-0.4 

lit/min, and the pressure at the outlet was fixed atmospheric [37]. 

Results and Discussion 

The Effect of Air Flow Rate on the Pressure Drop in the RPB with Packing and Baffles 

Figs. 5a and 5b showed that the effect of air flow rate of the pressure drops in the constant 

water flow rate and rotational speed in the RPB with 6 nozzles. These figures demonstrated that 

at the constant water flow rate and rotational speed values; increasing the air flow rate increased 

the pressure drop. To validate the results, simulation data were compared with the experimental 
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data of Sung et al.  The obtained results satisfied with the experimental data with deviations 

generally within 14%. 

 

Fig. 5. the effect of air flow rate on the wet- pressure drop in the RPB with 6 nozzles via blade packing (a); RPB 

via blade packing and baffles (b) at QL = 0.30 
𝑙𝑖𝑡

𝑚𝑖𝑛
 ,𝜔 = 800 rpm 

The Effect of Nozzle Numbers on the Velocity Vector of Air  

 

Fig. 6. the effect of nozzle on the wet- pressure drop in the RPB with 6 nozzles via blade packing (a); RPB with 

blade packing and baffles (b) at QL = 0.30 
𝑙𝑖𝑡

𝑚𝑖𝑛
 ,  QG = 20 

𝑙𝑖𝑡

𝑚𝑖𝑛
 and 800 rpm 

Figs. 6a and 6b depicted the effect of nozzles on the pressure drop in the constant water flow 

rate, air flow rate and rotational speed at QL = 0.30 
lit

min
 ,  QG = 20 

lit

min
 and 800 rpm in the RPB, 

respectively. These figures demonstrated that, with increasing nozzle increased pressure drop. 

Fig. 7 shows the airflow pattern at different nozzles in the RPB with packing. According to 

Figs. 6a to 6d, when the rotational speed, water and air flow rates were constant, RPB with 6 

nozzles lead the velocity vectors of the air flow increased. Then, the momentum of the air flow 

incremented. One probably is slipping velocity between the air and water phases increased. 

Furthermore, RPB with 8 nozzles caused the air flow awayed from the uniform pattern. The 



Journal of Chemical and Petroleum Engineering 2023, 57(2): 375-389 383 

obtained results satisfied with the experimental data. These figures also demonstrated that the 

velocity field in the outer edge of the rotor was larger than the inner edge of rotor and housing. 

 

Fig. 7. The influence of nozzles on the air velocity vectors (m. s-1) in the RPB with packing from the top view 

Fig. 8 describes the flow pattern of the air in the RPB with baffles at different nozzles.  As 

can be seen from Fig. 8, Increasing numbers of nozzle 2 to 6 caused the air velocity field 

incremented. According to Fig. 7 and Fig. 8, RPB with 6 nozzles at the constant rotational 

speed, air flow and water flow rates unlike the RPB with packing under similar operating 

condition; the air velocity vectors approached more uniform pattern pattern quickly. 

Furthermore, the presence of baffles in the RPB increased the drag force of baffles like to the 

packing on the water film. Thus, it leads to increase the air and water slip velocity [5]. 

Therefore, the baffles increased the momentum and velocity vectors of air flow. Also, the 

results showed that the RPB with 8 nozzles, air velocity field diminished. One probably is the 

water flow bulked the RPB. So, pressure drop increased. Therefore, flooding phenomena 

occurred in the RPB. As can be seen in Figs. 6a to 6d, the maximum air velocity vectors were 

at the rotor output.   

The Effect of Nozzle Numbers on the Velocity Vector of Water Flow 

Fig. 9 displays the effect of nozzles on the water velocity in the RPB with packing. 

According to Figs. 9a to 9d, at the rotational speed, water and air flow rates were constant, the 

velocity vectors of the water flow of RPB with 6, 8 can contribute to uniform rather than the 

RPB with 2, 4 nozzles all the rotor and housing. Therefore, increasing numbers of nozzles 

caused suitable distribution flow water. 

Fig. 9 demonstrates the behavior of water flow at different nozzles in the RPB with baffles. 

According to Figs. 9a to 9d, at the rotational speed, water and air flow rates were constant, 

increasing nozzles 2 to 6, increased water velocity vectors in the RPB. Also, these figures 

showed that increasing nozzles 2 to 6, increased more water velocity gradient in the rotor. 

Furthermore, the water flow bulked in a total space of packing and housing in the RPB with 8 

nozzles. So, the RPB reached to flooding. These figures also demonstrated that the velocity 
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field in the outer edge of the rotor was larger than the inner edge of the rotor. The obtained 

results good agreement with the experimental data. 

 

 

Fig. 8. The influence of nozzles on the air velocity vectors (m. s-1) in the RPB with baffles from the top view 
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Fig. 9. The influence of nozzle numbers on the velocity vectors of water (m. s-1) in the RPB with packing from 

the top view 

Conclusion 

RPBs have been recently used in the many chemical processes such as absorption, 

desorption, distillation, and etc. Owing to the high gravity field, RPBs can improve the 

exhaustive interface between air-water. In this paper, air-water analysis was conducted by using 

CFD. Thus, flow analysis in the RPB with packing and baffles was performed. First, the RPB 

with packing results demonstrated that increasing nozzle 2 to 6 increased velocity field of air 

flow. Also, RPB with 8 nozzles caused the air flow awayed from the uniform flow pattern. 

Second, the RPB with baffles, increasing nozzles from2 to 6 caused the air velocity field 

incremented. Also, the RPB with 8 nozzles, the air velocity field diminished. Furthermore, 

velocity vectors of water flow in the RPB with packing, increasing nozzles from2 to 8 were 

uniform distribution in all section of rotor and housing.  Also, RPB with baffles, increasing 

nozzles from 2 to 6 can create gradient velocity vectors of water in all sections of the rotor and 

housing. Then, momentum of water flow increased. The obtained results were compared with 

the experimental data   extracted from the RPB with 6 nozzles. 

Furthermore, flooding phenomena occurred in the RPB with baffles with 8 nozzles. Under 

the same operating conditions, RPB with bafflles can improve the momentum flow of air and 

water. In the results demonstrated that RPB with packing and baffles with 6 nozzles, air flow 

has more momentum and reached the uniform flow pattern than the other nozzles. 

Nomenclature 

Prandel dispersion 𝜎
𝐷

 

Turbulence dissipation rate (m2. s-3)   

Surface tension (kg. s-2) k  
Acceleration (m. s-2)   

Turbulence viscosity (pa.s) 𝜇
𝑡
 

Particle density (kg. m-3) p  

Effective density (kg. m-3) m  
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Effective viscosity(pa.s) m  

Viscosity of phase k(pa.s) k  
Rotational speed(rad.min−1) 𝜔 

Volume fraction of phase k k  

Volume force F  
produced viscosity G 

Diameter particle (m) dp 

Turbulence velocity mixture 𝑣𝑚 

Mass fraction of phase k kc
 

Mass flow rate of phase q to p (kg.s−1) 𝑚𝑞𝑝 

Mass flow rate of phase p to q (kg.s−1) 𝑚𝑝𝑞 

Momentum Source of phase k (rad.min−1.m−3) kS
 

Average velocity of phase k (m. s-1) 
k  

Average velocity mixture (m. s-1) 𝑣𝑚⃗⃗⃗⃗  ⃗ 

Air flow rate (lit. min-1) QG 

water flow rate (lit. min-1) QL 
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