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Green corrosion inhibitors, such as Luffa Cylindrica leaf extract, have 

demonstrated outstanding inhibitory efficiency on mild steel in acidic 

environments. However, their effective design and optimization for field 

applications are limited and time-consuming owing to the associated 

uncertainties. Quantifying these uncertainties remains a challenge due to the 

requirement of many model realisations to capture and represent the true 

distribution of uncertainty. This study built a Response Surface Model 

(RSM) approximation of corrosion inhibition efficiency (IE) for effective 

optimization and uncertainty propagation. To quantify the uncertainties, we 

explored two stochastic methods: Monte Carlo Simulation (MCS) and 

Markowitz classical theory with the Genetic Algorithm (GA). The two 

approaches differ in propagation, sampling, and the number of realizations. 

MCS uses the approximation RSM with 10,000 randomly generated 

realizations, whereas the Markowitz technique uses the mean-variance 

objective function with just 100 realizations. Markowitz's classical theory 

revealed a 50 and 99.9% chance that the IE of Luffa Cylindrica leaf extract 

is 79.7 and 76.5%, respectively while MCS indicates at least 10 and 90% 

probabilities that the IE of Luffa Cylindrica leaf extract is 85.16 and 

74.14%, respectively. When compared to the 88.4% efficiency previously 

reported for the same extract, the two techniques indicate less than 10% 

chances for IE. As a result, for the actual implementation of green 

inhibitors, their assessment must include uncertainty analysis. 
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Introduction  

When a metal is exposed to its environment, electrochemical processes occur, which leads 

to corrosion. Metal corrosion is a serious issue that costs a lot of money and impacts negatively 

every production sector. Every year, billions of dollars are spent internationally to fight 

corrosion and prevent disasters [1]. As a result, corrosion prevention is a vast study topic with 

many distinct techniques [2]. Corrosion can be minimized through careful design, appropriate 

material selection, electrochemical (anodic and cathodic) protection, protective coatings, and 

the use of corrosion inhibitors [3]. The application of a corrosion inhibitor is frequently 

regarded as the most viable and time-efficient of these options. Synthetic inhibitors are organics 

with structures that are predominantly composed of nitrogen, sulfur, or oxygen atoms [4]. They 

are very efficient yet, costly and non-biodegradable [5, 6]. Many plant extracts are utilized, 

including Mangifera indica (mango) seed, bark, and leaf extract [7], orange peel extract [8], 

leaf and stem extract of Sida acuta [9], Pawpaw leaf extract, groundnut leave extract, kola leaf 

extract, [10,11], neem leaf extract [12,13], Psidium Guajava Leaf Extract [14], Luffa Cylindrica 

leaf extract [15]. The popularity of these extracts was ascribed to their eco-friendliness, non-

toxic nature, environmental friendliness, and accessibility. 

Various plant extract evaluation studies are currently restricted to the laboratory, and the 

thorough approaches for connecting field extract performance with a controlled corrosion 

experiments are still insufficient for many reasons [16]. A variety of factors can aid metal 

corrosion, including their reactivity, the presence of contaminants, the pH and temperature of 

the solution, and industrial practices such as acidizing, acid cleaning, pickling, descaling, and 

so on. Understanding how these uncertainties impact the anticipated corrosion rate in a 

controlled setting is a good starting point for building this correlation [17]. The analytical 

methods used to measure corrosion inhibitor effectiveness are based on electrochemical 

approaches and weight loss from immersion tests [1]. In the electrochemical operations, the 

Tafel extrapolation methods, electrochemical impedance spectroscopy (EIS), linear 

polarization resistance (LPR), or a combination of these techniques are frequently utilized [3]. 

Using these approaches, Tafel's experiment has been linked to the subsequent systemic and 

stochastic errors [2, 3]. The Tafel approach takes into account the relationship between current 

density and overvoltage. Eq. 1 is used to compute the corrosion rate for mild steel using the 

linear polarization method (LPR). 

𝐶𝑅 = 0.503
𝛽𝑎𝛽𝑐
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1
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 (1) 

Thus, the relative deviation of CR calculation due to component variables can be expressed 

by Eq. 2 [17,18]. 
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Thus, the total uncertainty factors in LPR corrosion computation are caused by 

instrumentation (potential, applied current, working electrode surface area) and Tafel slope, 

(β)[2]. Previous research has shown that during corrosion analysis, to assume linearity while 

determining the Tafel slopes can generate errors of 34-50% [19, 20]. Similarly, the assumption 

that the corrosion process does not vary across a potential range of several hundred millivolts 
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to establish the uniform rate of corrosion may add some degree of inaccuracy into the study 

[21].  

In the immersion test, the CR and IE are generally computed using Eq. 3 and 4 [6,15, 22]. 

The values of these model inputs should ideally correspond to those of the actual system. 

However, because the inputs are prone to experimental variability and measurement error, there 

is a mismatch between what is measured or reported as the input to the physical system and its 

real value. The computational model's capacity for model prediction would therefore be 

constrained since the inputs used by the model and the real system are different [23]. To 

compute the corrosion rate for test runs in line with ASTM G31 Standard Practice for 

Laboratory Immersion, Freeman [24] has examined how statistical errors in the variables on 

the right side of Eq. 3 statistically propagate through to CR by Eq. 5.  

𝐶𝑅 =
𝛼(𝑚0−𝑚𝑓+𝑚𝑐)

𝜌𝐴(𝑡𝑓−𝑡0)
  (3) 
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where 𝑚𝑜 and 𝑚𝑓 are the initial and final masses in g, 𝑡𝑜 and 𝑡𝑓 are the initial and final times 

in h, respectively, A is the surface area cm2, ρ is the density g/cm3, and α is a constant (87 600 

mm cm-1 h year-1). The term mc (g) indicates the extra loss of base metal caused by eliminating 

the corrosion products. 

Vunc is the variance of the uncertainty, σm represents the standard deviation in the 

measurement of mass, σt represents the standard deviation in the measurement of time, and σA 

represents the standard deviation in the measurement of area. The subscripts “i”, “f” and “c” 

stand for initial, final, and cleaning, respectively.  

Another source of uncertainty in IE is a lack of thorough understanding of the corrosion 

process and/or contributing variables. When evaluating different green inhibitors, many 

researchers frequently look at the effects of temperature, concentrations (of medium and 

inhibitors), and immersion time [22, 25].  The result is highly unclear since a number of other 

elements that affect the corrosion process are ignored. The use of surrogate models in the 

optimization research is another cause of error. Empirical correlations are often applied in 

engineering to reduce computing costs and make project choices easier [26]. Response surface 

models, for example, have found use in corrosion research for sensitivity analysis, chemical 

synthesis, and optimization [1, 27].  

Previous attempts in green corrosion inhibition studies seldom took uncertainty into account 

when assessing various plant extracts as anti-corrosion in metals exposed to acid and salt media. 

As a result, assessing the IE of Luffa Cylindrica leaf extract uncertainty is considered in this 

work. Quantifying uncertainties remains a challenge due to the requirement of many model 

realisations to capture and represent the true distribution of uncertainty. This study built a 

Response Surface Model (RSM) approximation of corrosion inhibition efficiency (IE) for 

effective optimization and uncertainty propagation and quantify the uncertainties, by exploring 

two stochastic methods: Monte Carlo Simulation (MCS) and Markowitz classical theory with 

the Genetic Algorithm (GA). The work flow of the two methods is depict in Fig. 1. 
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Fig. 1. Workflow of the proposed Markowitz and Monte Carlo Simulation 

Material and Methods 

Batch Corrosion Study 

The Luffa Cylindrica leaf extract was obtained by the soxhlet extraction method using 

analytical grade ethanol as solvent. To identify the individual compounds in the extracts, the 

Gas Chromatograph-Mass Spectrometry (GC-MS) technique was used. FT-IR spectroscopy 

was also used for the qualitative analysis to identify the functional groups present in the extract. 

The detailed result from the characterization of the extract is available in [15].  The extract was 

tested for corrosion inhibition of mild steel coupons (22 mm x 36 mm x 3 mm) in 0.5 M HCl 

solution using the weight loss method [6]. The preliminary investigation was carried out at 

room temperature (30±0.50C) for various concentrations of Luffa cyclindrica leaf extract (0.2-

1.2g/L) for 24 days. A batch corrosion study was thereafter carried out at different 

concentrations (0.5-1.0 g/L) of Luffa cyclindrica extract placed in a thermostat water bath 

shaker (Model: SHAC1) to determine the effect of temperatures (30 - 60 °C) and immersion 

time (4-12 h). 

The initial and final weight of the mild steels was measured using a precision balance 

(WJEUIP, Model JA 6003B) of 0.001g sensitivity. The measurements were replicated three 

times to minimize the experimental error.  

The weight loss and the IE of the Luffa Cylindrical extract were calculated using Eq. 6 and 

7, respectively. the result in terms of corrosion rate is as presented as shown in Table 1. 
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W = 𝑊𝑖 − 𝑊𝑓  (6) 

𝐼𝐸 = 100 (
𝑊𝑜 − 𝑊1

𝑊𝑜
) % (7) 

 

where   W = weight loss,  𝑊𝑖   = initial weight,  𝑊𝑓   = final weight.  Where, 𝑊𝑜  and 𝑊1 are the 

weight loss of mild steel in the absence and presence of inhibitor in HCl medium at the same 

temperature respectively.  

Table 1. Weight loss recorded at ambient conditions for different concentrations and immersion time 

Inh. 

Conc 
Immersion time (h) 

(g/l) 24 48 72 96 120 144 168 

0 1.1100±0.01 1.1200±0.07 1.1400±0.01 1.1800±0.01 1.2000±0.02 1.2400±0.00 1.4454±0.00 

0.2 0.5994±0.08 0.5227±0.06 0.4594±0.01 0.4153±0.03 0.3956±0.01 0.3793±0.01 0.4425±0.01 

0.4 0.4956±0.05 0.4322±0.10 0.3799±0.01 0.3434±0.01 0.3271±0.01 0.3136±0.00 0.3659±0.02 

0.6 0.4566±0.01 0.3981±0.01 0.3500±0.02 0.3164±0.01 0.2681±0.00 0.2571±0.00 0.2999±0.01 

0.8 0.3704±0.00 0.3230±0.01 0.2839±0.01 0.2566±0.00 0.2444±0.00 0.2344±0.01 0.2734±0.01 

1 0.3435±0.01 0.2996±0.01 0.2633±0.01 0.2380±0.00 0.2267±0.01 0.2174±0.02 0.2536±0.01 

1.2 0.3435±0.00 0.2995±0.05 0.2633±0.00 0.2380±0.01 0.2267±0.00 0.2174±0.01 0.2536±0.00 

Surrogate Modelling 
A surrogate model is any model that mimics the relationship that the computational model 

establishes between the input variables and the quantity of interest (QoI). The significance of 

using a surrogate model in the propagation of uncertainties is to gain computation time. Many 

types of surrogate model have been proposed, the polynomial surrogate models are most often 

encountered. Over the last decade, attempts have been made to build surrogate models of 

deterministic functions. The most popular are Gaussian process modelling [28], generalized 

polynomial chaos expansion [29] and low rank tensor approximations [30].  

Gaussian process (GP) regression, sometimes known as GP, is a popular approach for 

developing surrogate models with uncertainty quantification. This method has gained 

popularity in computer experiments [30] and now allows for scaling up in the number of 

learning points, thanks to the emergence of multi-fidelity codes, which has motivated the 

introduction of new GP regression approaches such as the Gaussian process auto-regressive or 

AR(1) scheme  and the Deep GP method [31]. However, the existing autoregressive models 

and Deep GP can only be used for low-dimensional outputs.  

In the case of polynomial chaos expansions (PCE) [32] the random fields of interest are 

approximated by expanding them in truncated series of random so-called polynomial chaos. 

Inserting these expansions into the original model yields the governing equations, which 

identify the unknown deterministic expansion coefficients. Since the governing equations are 

not the same as the model equation, the PCE technique is invasive. Thus, for models with 

limited accessibility, PCE may not be applicable. Stratified sampling techniques, such as Latin 

hypercube sampling (LHS), are used to improve the generation of random samples to allow for 

smaller sets giving rise to a higher computational efficiency.  

On the other hand, if the random quantity is anticipated or expected, to exhibit a certain 

degree of smoothness along the stochastic space, a suitable and popular choice is to take 

advantage of the smoothness using a tensor approximation that rely on polynomials. Early 

efforts in this direction were reported to have used a univariate Hermite polynomials of zero-

cantered, unit variance, normal random variables. So, tensorization of univariate Hermite 

polynomials leads to an orthogonal basis. 

In this study, a Response Surface Methodology (RSM) and statistical sampling were 

deployed for building an approximation model. Collocation points were acquired 

experimentally using a 3-level factorial design in the Design Expert software version 11. The 

32 experimental realizations of the IE obtained at different inhibitor concentrations (0.5-1.0 
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g/L); temperatures (30 - 60 °C) and immersion time (4-12 h) are presented in Table 2. The “+1”, 

“−1,” and “0” in the Table 2 denote the absolute high, low, and medium values of the corrosion 

factors, respectively. Apart from time-saving and minimum cost, from a few numbers of 

experimental runs, one can maximize information and develop efficient uncertainty RSM 

approximation model for uncertainty propagation. 

A typical generalized polynomial model of second order can be constructed by finding the 

least-square fit between the responses and training data. Eq. 8 represents a quadratic proxy. 

𝑦(𝑥) =  𝑦̂(𝑥) +  𝜀,      𝑥 ∈  𝑅𝑚 (8) 

where 𝜀 represents the random error which is assumed to be normally distributed with a zero 

mean and a variance of 𝜎2. The error 𝜀𝑖 at any given observation is identically distributed since 

it is independent of other observations. To develop a correlation between x and y (see Eq. 9), 

the coefficients, β are carefully estimated such that the error is minimized.  

𝑦̂(𝑥) =  𝛽0 + ∑ 𝛽𝑖𝑥𝑖𝑖 + ∑ ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗𝑗𝑖 + ∑ 𝛽𝑖𝑖𝑖 𝑥𝑖
2  (9) 

where: x = vector of N input control parameters, 𝛽𝑖 = coefficient of the linear model, 𝛽𝑖𝑗 = 

coefficient of interaction terms, and  𝛽𝑖𝑖 = coefficient of the 2nd order model. 

Table 2. Responses of experimental design for inhibition process of mild steel in the presence of Luffa 

Cylindrica extract in 0.5M HCl [15] 

  Factor 1 Factor 2 Factor 3 Response 2 

Std Run X1:inh.Conc X2:Temp X3:time Inhibition efficiency 

  g/l K h % 

4 1 0.50 318 4 76.92 

18 2 1.00 333 8 87.38 

13 3 0.50 318 8 77.42 

15 4 1.00 318 8 83.09 

2 5 0.75 303 4 71.73 

28 6 0.75 318 8 79.64 

3 7 1.00 303 4 73.64 

10 8 0.50 303 8 70.77 

21 9 1.00 303 12 75.68 

22 10 0.50 318 12 78.74 

11 11 0.75 303 8 73.27 

14 12 0.75 318 8 79.64 

7 13 0.50 333 4 84.38 

19 14 0.50 303 12 71.55 

27 15 1.00 333 12 87.98 

16 16 0.50 333 8 85.42 

30 17 0.75 318 8 79.64 

9 18 1.00 333 4 86.81 

1 19 0.50 303 4 69.80 

31 20 0.75 318 8 79.64 

32 21 0.75 318 8 79.64 

6 22 1.00 318 4 82.39 

29 23 0.75 318 8 79.64 

23 24 0.75 318 12 80.72 

17 25 0.75 333 8 86.81 

5 26 0.75 318 4 79.73 

25 27 0.50 333 12 85.73 

8 28 0.75 333 4 85.21 

24 29 1.00 318 12 84.06 

26 30 0.75 333 12 87.34 

12 31 1.00 303 8 74.34 

20 32 0.75 303 12 74.32 
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The model uncertainty was first reduced by evaluating the linear, factorial (2F), quadratic, 

cubic and quartic models using sequential p-value, lack-of-fit, correlation coefficient and 

predicted correlated coefficient indicators using the analysis of variance technique [33]. The 

analysis revealed that the quadratic model is the most significant at 95% confidence level (𝛼 = 

0.05) based on the F-value of 4100.49 and p-value <0,0001 recorded as shown on the ANOVA 

table presented in Table 3. From Table 3, it is observed that the large F-value obtained indicates 

non-significant noise and the p-value which is less than 0.05 suggests the model is significant. 

The model terms A, B, C, AB, BC, A2, and B2 show a high impact on the IE. The developed 

model for IE is given in Eq. 10. 

𝐼𝐸%  =  3.67979 + 51.9421𝑥1 − 0.153920𝑥2 − 0.108889𝑥3 − 7.50642 𝑥1
2 +

0.001132𝑥2
2 − 0.108889𝑥1𝑥2 − 0.003644𝑥2𝑥3  

(10) 

 

where x1, x2 and x3 represent Inhibition Concentration, Temperature and Time, respectively. 

The Values of R2, Adjusted R2 and predicted R2 of 0.9993, 0.9985 and 0.9991 indicate the 

developed model is excellent and predictable. The plot of the predicted IE against the 

experimental corrosion IE of the Luffa Extracts is shown in Fig. 2 which indicates about 99% 

of data points are along the 𝑥 = 𝑦 line. This shows that the developed model exhibits a very 

high efficiency in predicting the experimental IE. 

Table 3. ANOVA for Inhibition Efficiency for the Response Surface Model 

Source Sum of Squares Df Mean Square F-value p-value 
 

Model 845.39 7 120.77 4100.49 < 0.0001 Significant 

x1 30.49 1 30.49 1035.34 < 0.0001 
 

x2 773.18 1 773.18 26251.74 < 0.0001 
 

x3 10.09 1 10.09 342.66 < 0.0001 
 

x1x2 2.00 1 2.00 67.93 < 0.0001 
 

x2x3 0.5092 1 0.5092 17.29 0.0005 
 

x1² 1.13 1 1.13 38.48 < 0.0001 
 

x2² 0.3148 1 0.3148 10.69 0.0040 
 

Residual 0.5596 19 0.0295 
   

Lack of fit 0.5596 14 0.0400 
   

Pure Error 0.0000 5 0.0000 
   

Cor Total 845.95 26 
    

Std. Dev. 0.1716      

Adeq 

Precision 

197.0976      

 

Fig. 2. Parity Plot of proxy predicted vs actual IE 
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Uncertainty Quantification Methods 

Uncertainty quantification method can be deterministic or stochastic [34]. In the 

deterministic method, output uncertainty is expressed as a function of input uncertainties using 

Taylor series expansion, Hermite polynomials or basis functions [34]. Some examples of such 

method are generalized Polynomial Chaos (gPC), Gaussian closure, Equivalent linearization 

and the use of meta-models [30]. Deterministic methods are more suited for linear problems 

and in cases where uncertainties are relatively small. On the other hand, stochastic methods 

include Monte-Carlo (MC), Latin Hypercube Sampling (LHS) and Fourier Amplitude 

Sensitivity Test (FAST). Stochastic methods are computational cost. Nevertheless, they are 

widely used in various fields of science and engineering. 

Many frameworks such as those that based on fuzzy-set theory, interval theory, evidence 

theory, and probability theory have been investigated for uncertainty quantification. These 

frameworks considered limitations inherent in experimental, modelling, and computation. Of 

all these frameworks, the probability theory is most popular because it has proved to facilitates 

a unified treatment of parametric uncertainties and modelling errors. In uncertainty 

quantification, we seek to establish theory, methods, and computer programs for effective 

management of the ensuing parametric uncertainties, modelling errors, and computational 

errors in predictive simulations. The three important processes are: characterization, 

propagation, and sensitivity analysis. 

The process of incorporating uncertainty to computational models is termed 

characterization. The common approaches include parametric, nonparametric, output-

prediction-error approaches, and generalized or hybrid approaches that couple parametric and 

nonparametric approaches [30]. Parametric approaches involve the characterization of some or 

all parameters as random variables, stochastic processes, or both. On the other hand, when the 

uncertain features of the computational model cannot be associated with uncertainties in some 

or all of the parameters, nonparametric approaches are adequate. The output-prediction-error 

approaches involves the addition of a random noise term to the quantity of interest. 

To propagate uncertainty, the probability theory equates the probability of QoI with the 

probability that the value taken by the uncertain input variables is contained in the 

corresponding subset. This is most often implemented using either the Monte Carlo sampling 

method or stochastic expansion methods which required fitting surrogate model to the 

computational model; then, the characterization of the uncertain input variables is mapped 

through this surrogate model into the characterization of the quantity of interest [35].  

The objective of the sensitivity analysis is to gain some insight into the manner in which 

uncertainties introduced in the input variables induce that in the QoI. Such insight can be very 

useful for identifying where to direct efforts aimed at reducing uncertainties, and it can 

constitute a crucial prerequisite to the optimization of designs in the presence of uncertainties 

and the validation of models, among other purposes. Several types of sensitivity analysis of 

uncertainties can be used and have been proposed in the literature, such as methods involving 

scatter plots and regression, correlation, and elementary effects, methods involving variance 

analysis, and methods involving differentiation [36]. 

Optimization with Uncertainty Consideration 

Two methods were investigated in this study for performing the optimization and uncertainty 

quantification. The first method is the Monte-Carlo Simulation (MCS) method, which is the 

most common robust optimisation method to find the probability distribution of an objective 

function that has been predefined to include uncertainties. This method involves the use of an 
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approximation model to reduce computational costs. Unfortunately, unless the surrogate model 

perfectly mimics the computational model, the use of the surrogate model introduces an 

approximation error in the characterization of the QoI. Also, the variables included in the 

optimisation routines to account for uncertainty are often limited so, significant uncertainties 

can be neglected. Thus, the optimisation results were not always “true” and may be overly 

optimistic. In general, the challenges with optimization under uncertainties is the determination 

of number of model realisations to adequately capture and represent the true distribution of 

uncertainty at a minimum computation cost.  

By performing optimisation on a selected number of models out of large set of models can 

be beneficial in terms of computation time and cost. Efforts in this regard include the use of 

techniques such as k-means clustering and non-dominated sorting algorithm to help in selecting 

the “best” solutions for nominal optimisation and optimisation under uncertainty [37]. 

However, an attempt to reduce the complexity of the optimisation problem by ranking 

realisations has been made which has limited the optimisation to a few realisations and the 

actual distribution of uncertainties is neglected. To address some of the challenges enumerated 

we applied Markowitz classical optimisation theory, to the mean-variance objective function 

and robust optimisation was performed under uncertainty using the Genetic Algorithm (GA). 

The mean-variance function is similar to a double objective problem which is transformed to 

single-objective optimisation using the weighting function, λ. 

Regular Monte Carlo Simulation 

The characterization, propagation and sensitivity analysis were carried out using the Oracle 

Crystal Ball Fusion Edition v11.1.1.1.00. The key activities include (i) defining decision 

variable IE, and assigning the distribution functions to process parameters (ii) propagate the 

uncertainties using RSM approximation model, and (iii) performing sensitivity analysis. A 2-

parameter uniform distribution function was assumed since the probability density function is 

expected to be constant within the interval (a < X < b) and zero outside that interval. This allows 

for sampling within the specified limit of various parameters which are concentration (0.5-1.0 

g/L), temperature (303-333 K), and time (4-12 h) using a MC sampling technique. To allow for 

a wide range of coverage, 10,000 trials of random numbers was assumed for the simulation. 

After the simulation trials were completed, the output results were analysed and realizations 

were ranked using P10-P90. The realization with a rank of P10 indicates that the recorded value 

of IE has a 10 percent chance of occurrence. While the P90 indicates 90 percent chances of 

occurrence. The wider the difference between these probabilities, the more uncertain is the QoI. 

Mean -variance method 

One well-known method for carrying out optimization under uncertainty in financial 

operations is the Markovitz classical theory [37]. Many studies have adopted this technique 

which involves estimation of the efficient frontier otherwise known as mean-variance to reflect 

how the reward varies with uncertainties. In the context of corrosion inhibition optimization, 

the reward is the predicted IE which in this study is uncertain. The uncertainty is computed 

using the variance of the IE. To demonstrate this technique, the process response (f) was 

modelled as shown in Eq. 11: 

𝑓 = 𝑓(𝛼) (11) 

where, α = {α1, α2, α3, …, αN} are set of unknown variables that affect the corrosion inhibition 

process.  If in a model with m unknown parameters, n points are utilized to describe the 

distribution of an uncertain parameter, N = mn realisation of uncertainty will be needed to 

sufficiently sample the uncertainty space. The mean and standard deviation for N realizations 

is provided in Eq. 12 and 13, respectively. 
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𝜇(𝛼) =
1

𝑁
∑ 𝑓𝑖(𝛼)𝑁

𝑖=1   (12) 

𝜎(𝛼) = √
1

𝑁
∑ (𝑓𝑖(𝛼) − 𝜇(𝛼))2     𝑁

𝑖=1       (13) 

The procedure for this method is summarized as follows: 

Step 1. Generate n=100 random number of concentration (0.5-1.0 g/L), temperature (303-

333 K), and time (4-12 h) using MC random generator. 

Step 2. Construct n=100 IE realization model using approximated model 

Step 3. Calculate 𝐹𝜆 =  𝜇(𝛼) −  𝜆𝜎(𝛼) for a chosen ʎ.  

where the risk-aversion factor, denoted by 𝜆 determines the degree of uncertainty tolerance. A 

higher  𝜆 value denotes a lower risk preference and a stronger aversion to risk, which might 

lead to a better degree of decision-making confidence. In the case of normally distributed 

samples, 𝜆 values of 0, 1, 2, 3 and 4 correspond to 50.00, 84.13, 97.72 and 99.99% confidence 

[38]. These five confidence levels are chosen for the optimisation method to allow for a wide 

range of risk tolerance [39]. 

Step 4. Perform optimization using GA 

During the optimization phase, a search algorithm is employed to determine the maximum 

value of F for a particular model realization. The procedure is then repeated for various values 

of λ. On the mean-variance plot, all models can be plotted, but the optimal cases for each 

typically lie on the efficient frontier, though other models may as well. 

To optimize the IE using a mean-variance approach, the objective function is defined as 

follows: 

𝐹𝜆 =  𝜇(𝛼) −  𝜆𝜎(𝛼) (14) 

In this study, the implementation of the GA with MATLAB, (2019) was carried out to obtain 

the optimal solution of IE of Luffa Cylindrica extract. The best fitness value was attained after 

the 25th generation after setting each generation at a population of 100 and a chance of mutation 

of 5% according to [37]. To ensure a global optimum solution, the experiments were repeated 

thrice. Fig. 3 shows the GA workflow algorithm used in this study which includes population 

generation, evaluation, reproduction, elitism, crossover, and mutation [40]. 

Step 5. For optimal F, plot μ(α) against σ(α), and identify the efficient frontier.  

From a set of N individual realisations of f sampled using different values of 𝛼, the mean-

variance plot can be constructed by plotting μ(α) against σ(α). The efficient frontier is then 

determined by selecting points that have a higher μ than any other point with the same σ. 

Following that, Markowitz maximizes μ for a specified σ and minimizes σ for a specified μ. 

Step 6. Rank the solution using non-dominated sorting technique 
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Fig. 3. Workflow of the Genetic Algorithm methodology 

Results and Discussions  

Batch Corrosion Study 

The result of the weight loss (Table 1) revealed a significant reduction in the material loss 

with an increase in extract concentration which decreases with time. Comparing this 

observation with the control solution shows clearly that the corrosion of mild steel in 0.5 M 

HCl solution was inhibited in the presence of the Luffa Cylindrica extract molecules by 

adsorbing on the mild steel surfaces thereby forming a thin film that prevented direct contact 

of the acid and mild steel [15, 41]. The inhibition efficiency (Fig. 4) however was observed to 

increase with the extract concentrations until equilibrium was attained at 1.0 g/L after 144 h 

which resulted in an IE of 82.47%. Green inhibitors generally are highly sensitive to 

temperature [1, 15, 17]. For practical applications in the chemical and related industries, 

investigation of the thermal stability of green inhibitors at temperatures other than the ambient 

is critical. However, previous studies have shown that many plant extracts are thermally stable 

at temperatures between 30-60 C [6], [15, 22].  

 
Fig. 4. Extract’s corrosion inhibition efficiency in the absence and presence of different concentrations of Luff 

cylindrical extract at room temperature (30±0.5oC) 
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Effects of Factors on IE 

The plot showing the effects of inhibition concentration, temperature and immersion time is 

shown in Fig. 5. Fig. 5a is a sensitivity plot which compares the effects of the corrosion factors 

at base value (0) in the design space. The IE was estimated and plotted by changing only one 

factor, say temperature, over its range (303-333 K) while holding all the other factors constant. 

The steepest slope in the temperature trend (Fig. 5b) shows that the IE is most sensitive to 

temperature compared to other factors. The plot therefore showed that temperature (x2) is a 

“heavy hitter” in this study and plays a dominant role in the designing of a Luffa Cylindrical-

based inhibitor for the corrosion of mild steel. The displacement of the cube in the sensitivity 

plot towards the right-hand side shows high thermal stability and positive influence on IE while 

the marginal displacement observed in the case of inhibition concentration (x1) and the 

immersion time (x3) as is observed in Fig. 5c and 5d indicates a better understanding of these 

parameters from the preliminary study and therefore constitute a marginal level of uncertainty 

in the evaluation process.  

Fig. 6 presents the 3D plots and contour maps that show the extent to which corrosion 

parameters interaction influences the IE. A strong synergy was observed among these factors 

and their interactions were observed to have a great influence on IE. However, temperature 

and inhibition concentration exhibit pronounced effects on the IE. 

 

 

  
Fig. 5. Graph showing (a) Sensitivity plot (b) effect of temperature on IE (c) effect of Concentration on IE (d) 

effect of time on IE 

(a) (b) 

(c)  (d)  
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Fig. 6. 3D and Contour plots indicating the synergistic effects of (a) temperature and concentration and (b) 

Temperature and immersion time 

Regular Monte Carlo Simulation 

Fig. 7 shows the forecast chart for the Cumulative probability distribution of the Inhibition 

Efficiency which was best fitted to the beta-distribution function after 10,000 iterations (a and 

b respectively). Ten thousand iteratively built equiprobable realizations in Excel were found to 

be sufficient to stabilize the resulting forecast distributions. From the scatter plot shown in Fig. 

8, it is obvious the correlation coefficient of temperature (x2), Concentration (x1), and Time (x3) 

are 0.970, 0.209, and 0.113, respectively which indicates that temperature has the greatest 

influence on Inhibition Efficiency, followed by Concentration, and then Time. Table 4 shows 

the statistical analysis at the end of the forecast for IE after 10,000 iterations. The corresponding 

IE values obtained from the beta distribution are also displayed. The base case is 79.70 per cent 

at a mean standard error of 0.04 after the experimental validation which attests to the reliability 

of the simulation result. The P10 indicates 90% confidence with only 10% uncertainty while 

P100 indicates 0% confidence with 100% uncertainty. The P10, P20, P30, P40, P50, P60, P70, 

P80, P90, P100 is 74.14, 75.49, 76.74, 78.11, 79.48, 80.86, 82.27, 83.72, 85.16, and 87.9%, 

respectively. Therefore, the reported IE for Luffa Cylindrica of 88.4% [15] only deviated 

marginally from the P100 value of 87.8% reported in this study which makes the value highly 

optimistic.  
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Fig. 7. (a) Cumulative Probability Distribution (b) Beta- Distribution 

 
 

  
Fig. 8. Pareto Chart for Sensitivity analysis for the Forecast of IE and corresponding correlation of factor 
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Table 4. Statistical Analysis at the end of forecast IE and Beta-distribution function 

Statistics Fit-Beta Forecast Values 

Trials - 10,000 

Base Case - 79.7 

Mean 79.54 79.54 

Median 79.53 79.48 

Mode 79.48 --- 

Standard Deviation 4.08 4.09 

Variance 16.73 16.73 

Skewness 0.0039 0.0039 

Kurtosis 1.96 1.95 

Coeff. of   Variation 0.0514 0.0514 

Minimum 71.64 70 

Maximum 87.47 87.9 

Range Width 
 

17.9 

Mean Std. Error 
 

0.04 

 

Mean-Variance Method   

Fig. 9 is the plot of mean values, 𝜇(𝛼) of the IE against the standard deviation, 𝜎(𝛼) for 

different aversion factors λ =0, 1, 2, 3, 4. Each point on the graphs corresponds to  𝜇(𝛼) and 

𝜎(𝛼)  of 100 each of the ensembles of the uncertainties. The mean fitness value after 25 

iterations is the arithmetic average of the 100 objective functions of each generation. For each 

iteration, the standard deviation of the fitness value reduces, an indication that the simulation 

coverages reduce as the number of generations increases. The best and mean fitness values 

recorded are 79.132 and 79.1601%, respectively. The optimal IE obtained which correspond to 

50.00, 84.13, 97.72 and 99.99% probability, is 79.7, 78.0279, 77.0279 and 76.5%, respectively. 
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Fig. 9. Typical efficient frontier plot for different risk factors λ=0,1,2,3,4 

Conclusion 
Numerous factors do influence the corrosion process and many studies in the public domain 

seldom consider many of these factors which makes the outcome highly uncertain for practical 

and field applications. Green inhibitors are fast becoming the acceptable alternative for 

mitigating the corrosion of metals in acidic and other harsh media owing to environmental 

friendliness and availability. Several authors have evaluated different plant extracts and have 

reported inhibition efficiencies in the range between 80-97% [15]. The IE of Luffa Cylindrica 

leaf extract is quantified in this study using two distinct approximation models for uncertainty 

propagation. The following conclusions were drawn from this study: 

i. The Markovich method shows at least 50% and 99.9% probabilities that the IE of 

Luffa Cylindrica leaf extract is 79.7% and 76.5%, respectively.  

ii. The regular Monte Carlo Simulation indicates at least 10 and 90% probabilities that 

the IE of Luffa Cylindrica leaf extract is 85.16 and 74.14%, respectively. 

iii. Both results indicate the reported IE for Luffa Cylindrica leaf extract is highly 

optimistic and uncertain judging from the outcome of this present study.  

iv. Both methods agreed that the IE of 88.4% reported by [15] correspond to less than 

P50. 

v. Therefore, the development of lifetime field-applicable green inhibitors must consider 

uncertainty quantification for more realistic decision-making. 
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Nomenclature 
Symbol  Definition 

𝛽𝑎,   𝛽𝑐 Anodic and cathodic Tafel’s slope 

“i”, “f” and “c” Initial, final and cleaning 

𝑉𝑢𝑛𝑐 variance of the uncertainty 

𝛿𝑚 Standard deviation in the measurement of mass 

𝛿𝑡 Standard deviation in the measurement of time 

𝛿𝐴 Standard deviation in the measurement of area 

ρ Density 

A Surface area  

 𝑡𝑜 and 𝑡𝑓 Initial and final times 

𝑊𝑖, 𝑊𝑓 Initial weight, and final weight 

α = {α1, α2, α3, …, αN} Set of unknown variables that affect the corrosion 

𝜆 Risk-aversion factor 

𝜇  Mean  

𝜎 Variance  

CR Corrosion rate 

IE Inhibition Efficiency 

QoI Quantity of Interest 
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