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In this study, molecular dynamics simulation has been conducted to model 

the density of pure benzene at a 256.55-368.16 K temperature range and 

atmospheric pressure. All the simulations have been performed using 

BIOVIA Materials Studio 2017 software. The effects of various parameters 

on benzene density have been investigated, including the number of cell 

molecules (i.e., cell dimension), force field, and the initial cell density. 

Ewald and Atom-Based methods have been employed in the simulations to 

consider the electrostatic and van der Waals interactions. The molecular 

dynamics results were compared with the experimental data. Comparing the 

predicted and the experimental densities, the best results were obtained for 

100 benzene molecules with a COMPASS force field and an initial density 

of 0.9 times the experimental density. For initial densities of 70% and 90% 

of the experimental density, the coefficients of determination (R²) were 

0.9618 and 0.9779, and the RMSE values were 0.011269 and 0.0045548, 

respectively. The results indicate high accuracy of the molecular dynamics 

simulation for density prediction of pure benzene.  

 

Introduction  

Molecular dynamics (MD) studies the interactions between atoms and molecules using 

equations of motion during a specific period [1-3]. It is a powerful tool for the description of 

molecular-scale properties [4] for different applications, such as mass transfer systems where 

the diffusivity and absorption may be described by MD models [5-9] or studying the structure, 

dynamics, and performance of biological molecules [10]. Molecular dynamics can provide the 

atomic details attributed to the dynamics of a simulated system under conditions where 

experimental measurements are difficult and expensive to obtain. Different methods based on 

molecular dynamics simulation could be implemented to compute the density of fluids for both 

liquids and gases [11]. Andersen developed the molecular dynamics simulation method while 

numerically solving the Hamiltonian equations of motion by averaging over isoenthalpic-

isobaric canonical ensembles, taking the system volume into account as a dynamic variable [2]. 

Parinello and Rahman developed this method to let the cell shape change to investigate the 

effect of interaction potential on the crystal structure [1]. In addition, Nosé extended the MD 

method from isoenthalpic-isobaric canonical to canonical ensembles, and the constant 

temperature approach was created via time scaling in the system [3]. This approach gave rise 
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to the equations of motion for the extended systems, which led to the extension of the Nosé 

thermostat and provided the isothermal-isobaric ensemble (NPT) equations [12]. 

Some techniques for optimizing the crystal structure parameters at high and low 

temperatures are widely used [13]. Most MD programs in NPT ensembles have used planar 

wave bases. Also, for liquids, the equilibrium time of the NPT ensemble can be significantly 

longer because the volume fluctuations occur less frequently [14]. The mechanical force field 

(FF) is suitable for studying the condensed phase’s characteristics [15-20]. Furthermore, the 

mechanical force field in atomic detail can often go beyond the experiments. Even if a force 

field is attributed to studying the structures, dynamics, and functions of specific biomolecules, 

it is still crucial for the force field to precisely recreate the experimental liquid characteristics 

of small molecules that are the chemical constituents of the biomolecules. Wang et al. computed 

the density and heat of vaporization for an extensive system of organic molecules that contain 

distinct chemical functional groups [21]. They systematically predicted molecular 

characteristics (bulk density and vaporization heat) of 71 typical organic molecules via the 

General AMBER Force Field (GAFF). In the MD simulation, they applied the Particle Mesh 

Ewald (PME) method to evaluate the electrostatic energy and used Langevin dynamics to 

control the temperature. The density average percent error (APE) compared to the experimental 

results was about 4.43%. By optimization of van der Waals parameters, they could dramatically 

enhance the predicted values of molecular properties.  

In this study, the density of pure benzene was calculated by MD at the temperature range of 

256.55-368.16 K and atmospheric pressure. The MD simulation results were compared with 

the experimental data of Brüsewitz et al. [22]. To predict the density of benzene, the effects of 

different parameters, including the number of cell molecules (cell dimension), force field, and 

initial density, have been studied. Then, the difference between MD and experimental results 

has been presented via the coefficient of determination (R2) and the root mean squared error 

(RMSE). 

Molecular Dynamics Simulation 

All the simulations were carried out in this work using the Materials Studio 2017 software 

package. The amorphous cell module was used to apply periodic boundary conditions to 

determine the cell dimensions. In all the simulations, the COMPASS force field has been 

utilized to consider the molecular interactions in addition to Ewald and Atom-based summation 

methods for electrostatic and van der Waals interactions, respectively, with a cut-off distance 

of 12.5 Å. To construct the MD cell, first, the geometry of the benzene molecule has been 

optimized from an energy point of view to reach the most stable molecule. Afterward, the cell 

geometry was optimized. Fig. 1 shows the optimized benzene molecule and the optimized cell 

of 100 molecules.  

  
Fig. 1. The optimized molecule and cell of benzene 
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The optimizations were conducted based on the minimization of the RMSE, and the 

predictions were assessed through the determination coefficient defined in Eqs. 1 & 2: 

𝑅𝑀𝑆𝐸 = √∑ (𝜌𝑖
𝑒𝑥𝑝 − 𝜌𝑖

𝑠𝑖𝑚)
2𝑛

𝑖=1

𝑛
 

 

(1) 

𝑅2 = 1 −
∑ (𝜌𝑖

𝑒𝑥𝑝 − 𝜌𝑖
𝑠𝑖𝑚)

2𝑛
𝑖=1

∑ (𝜌𝑖
𝑠𝑖𝑚 − 𝜌𝑚)

2𝑛
𝑖=1

 
 

(2) 

where n is the number of data. exp

i , m , and sim

i  present the experimental density, the 

average experimental density, and MD predicted density. 

The benzene density was calculated using an NPT ensemble at the required temperature and 

pressure with a 1 fs time step. The velocity scale thermostat and Berendsen barostat were 

employed to control the temperature and pressure. The average density, , was computed using 

the average volume of the simulation box, (V), using Eq. 3. In this equation, 𝑁𝑟𝑒𝑠 is the number 

of remaining molecules in the cell, M is the studied molecule’s molar mass, and 𝑁𝐴 is the 

Avogadro constant. 

 

〈𝜌〉 =
𝑁𝑟𝑒𝑠𝑀

𝑁𝐴〈𝑉〉
 (3) 

 

Number of Molecules 

To investigate the effect of the number of molecules or the cell dimension on density, first, 

the cell has been constructed with different molecule numbers at similar conditions (at the 

temperature of 298.15 K, the pressure of 1 atmosphere, and using COMPASS force field), and 

then the simulation results have been compared with the experimental data of Brüsewitz et al. 

[22]. The experimentally measured density of benzene at 298.15 K and 1 atmosphere is 0.8737 

g/cm3. As the number of molecules increases in the system, the value of simulated properties 

such as density approaches the bulk value. However, finding the optimum number of molecules 

that give rise to values close to the experimental results is crucial to reducing the simulation 

time and cost. Table 1 illustrates the number of molecules and the cell dimensions in different 

simulations. In addition, the initial cell density is 0.7 times the experimental density here. After 

the cell construction, the density was calculated using Eq. 3 at simulation times of 150, 200, 

250, 300, 400, and 500 ps, and then the results were compared to the experimental data. Fig. 2a 

shows the MD predicted and the experimentally obtained densities versus the number of cell 

molecules at various simulation times.  

Moreover, Fig. 2b shows the percentage of errors for predicted densities drawn versus the 

number of molecules at different times. As shown in Fig. 2a, at all simulation times, the MD 

predicted density demonstrates a logarithmic increase as the number of molecules increases. 

The density variation is insignificant for the simulation cells with more than 80 benzene 

molecules. Fig. 2b reveals that the MD predicted density error compared to the experimental 

one, is 10.3% for a cell with 80 molecules and at a simulation time of 300 ps. This error 

decreases to 6.73% for the cell with 100 molecules. Considering the slight difference between 

the predicted and the experimental values at 300 ps, for the 100-molecule cell, 100 molecules 

are used to construct the simulation box.   
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Table 1. The number of benzene molecules and the cell dimensions at 298.15K and the pressure of 1 atm 

Dimensions (Å )  No. of Molecules Dimensions (Å) No. of Molecules 

25.7×25.7×25.7 80 8.6×8.6×8.6 3 

27.7×27.7×27.7 100 10.2×10.2×10.2 5 

31.7×31.7×31.7 150 12.8×12.8×12.8 10 

34.9×34.9×34.9 200 16.2×16.2×16.2 20 

39.9×39.9×39.9 300 20.4×20.4×20.4 40 

 

 

 
(a) 

 
(b) 

Fig. 2. a) Experimental and MD predicted densities vs. the number of cell molecules, b) the errors of the MD 

predicted densities vs. the number of cell molecules, at simulation times of 150, 200, 250, 300, 400, and 500 ps 
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Optimized Force Field 

After determining the optimum number of molecules for the prediction of the density of 

benzene at 298.15 K and 1 atm, the effect of the force field was investigated based on the 

previous work by Emamian et al. [19]. Benzene density was calculated for a constant number 

of molecules and at constant temperature and pressure using five different force fields, 

including COMPASS, Dreiding, Universal, Cvff, and Pcff, for simulation times between 150 

and 300 ps. Fig. 3 represents the predicted and experimental densities at a simulation time of 

300 ps at different applied force fields. It reveals that the absolute difference between the 

predicted and experimental density values is almost identical for both Universal and 

COMPASS force fields at t = 30 ps. However, as seen in Fig. 2a, using the COMPASS force 

field, in the worst case, the coefficient of determination (R2) is 0.882 at 500 ps, while using the 

Universal force field, R2 is 0.543. Therefore, 100 molecules and a COMPASS force field were 

chosen for the rest of the simulations. 

 

Fig. 3. Experimental (black column) and MD predicted densities at different force fields. 

Initial Cell Density 

During the cell construction, to predict the density using MD simulation, the initial cell 

density was 0.7 times the experimental density. Two initial densities of 0.7 𝝆𝒆𝒙𝒑 and 0.9 𝝆𝒆𝒙𝒑 

(i.e., 0.61159 and 0.78633 g/cm3) were used with simulation times of 150 – 500 ps to investigate 

the effect of the initial cell density on the ultimate predicted density. Fig. 4a shows the predicted 

and experimental densities versus simulation time at the initial densities. In contrast, Fig. 4b 

shows the percentage error versus simulation time for the initial densities mentioned. Fig. 4a 

shows that by increasing the initial cell density from 0.61159 to 0.78633 g/cm3, the accuracy of 

the predicted density at similar simulation times has increased. Fig. 4b indicates that the 

percentage error decreases as the simulation time increases. Based on the results of Figs. 2b & 

4b, the simulation time of 300 ps was considered the optimum, because it resulted in less error. 

The errors for the initial densities of 0.61159 and 0.78633 g/cm3 are 6.37% and 5.16%, 

respectively.  
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(a) 

 

(b) 

Fig. 4. The effect of a) initial cell density, b) percentage error vs. simulation time, at 298.15 K, 1 atm, and 

COMPASS force field 

Temperature 

For a molecular model, it is essential to accurately predict the molecular properties for a 

wide range of thermodynamic states. Each thermodynamic state is described by temperature, 

volume, and pressure [21]. In this part, benzene density was predicted for two initial densities 

of 0.7 𝜌𝑒𝑥𝑝 and 0.9 𝜌𝑒𝑥𝑝, at the temperature range of 256.55 - 368.16 K. Then the results were 

compared to the experimental results of Brüsewitz et al. [22]. Fig. 5 shows the MD predicted 

and experimental densities versus temperature. In general, as the temperature increases, the 

density decreases. As seen from Fig. 5, raising the temperature gives rise to a decrease in 

experimental density and the predicted one for both initial densities. However, the results for 

0.9 𝜌𝑒𝑥𝑝 are closer to the experimental data as expected because, as the system temperature 

increases, variation of electronic distribution in the system leads to the change of interaction 

between atoms, which is especially correct in metals but less accurate in semiconductors and 

insulators . 

Consequently, significant variation in the force field parameters is not expected in the current 

benzene cell, especially at the studied temperature range, which is much less than the benzene 

band gap. Therefore, experimental and simulated densities similarly increase as the temperature 

rises. Table 2 illustrates R2, RMSE, and APE for the two initial densities of 0.7 𝜌𝑒𝑥𝑝 and 0.9 
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𝜌𝑒𝑥𝑝. The obtained APE and the results shown in Fig. 5 reveal that the predicted density using 

the initial density of 0.9 𝜌𝑒𝑥𝑝 has given rise to more accurate results. Furthermore, R2 values 

also indicate more precise results for the initial density of 0.9 𝜌𝑒𝑥𝑝 compared to 0.7 𝜌𝑒𝑥𝑝.  

 

 

Fig. 5. The experimental and MD predicted benzene densities vs. temperature 

 
Table 2. R2, RMSE, and APE for two initial densities of 0.7 𝝆𝒆𝒙𝒑 and 0.9 𝝆𝒆𝒙𝒑 

Initial densities R2 RMSE APE 

0.7 𝜌𝑒𝑥𝑝 0.9618 0.011269 11.79994 

0.9 𝜌𝑒𝑥𝑝 0.9779 0.004555 7.49109 

 

Conclusion 

In this study, the effect of various parameters such as the number of cell molecules, force 

field, and initial density on the density prediction of pure benzene was studied at a temperature 

of 298.15 K and a pressure of 1 atmosphere. The predicted results have been compared to the 

experimental data. After finding the optimized conditions of 100 benzene molecules and the 

COMPASS force field, the density of benzene has been calculated at the temperature range of 

256.55 – 368.16 K and atmospheric pressure for two initial densities of 0.7 and 0.9 times the 

experimental density. The difference between the MD predicted and the experimental results 

was described using the coefficient of determination, root mean squared error, and average 

percentage error. At optimized conditions, for two initial densities of 0.7 𝜌𝑒𝑥𝑝 and 0.9 𝜌𝑒𝑥𝑝, R2 

values have been computed as 0.9618 and 0.9779, and the corresponding RMSEs were obtained 

as 0.01127 and 0.0046, respectively. 
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