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Modeling and optimization of thermal conductivity of stabilized γ-Al2O3 /water 

nanofluid using response surface methodology (RSM) 
 

 

 

Abstract 

The present study estimates thermal conductivity ratio (KR) of stabilized γ-Al2O3 /water nanofluid 

by response surface methodology (RSM). This study was operated under experimental conditions 

with solid volume fractions of SVF=0.05–2%, and temperature of T=25–45 °C. Sedimentation 

visualization and dynamic light scattering (DLS) were performed to test the stability of nanofluids. 

The results of monitoring the stability of nanofluid with sedimentation visualization method showed 

that it was stable for at least 24 h. Different models were evaluated based on a series of quality 

indicators and charts. Some of the indicators that were investigated in this study include standard 

deviation (Std. Dev.), coefficient of determination (R2) and coefficient of variation (C.V). After 

checking the quality indicators and charts for different models, the quadratic model was selected as 

the optimal model. The values of Std. Dev, R2 and C. V for the quadratic model were 0.0241, 0.9785, 

and 1.87, respectively. Also, adjusted R2 and predicted R2 parameters of the quadratic model were 

equal to 0.9606 and 0.8776 respectively, which signifies the accuracy of the model. The residual plot, 

the normal probability plot, the Box-Cox plot and the predicted vs. actual plot also showed that 

quadratic model has a good accuracy, and is well capable of estimating the KR of the nanofluid. The 

most optimum KR is 1.485. At a temperature of 45 °C, this condition was achieved in samples at 

SVF=1.764%. 
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1. Introduction 

In many engineering applications, base fluids like water, oils, and glycols are utilized as operational 

fluids in heat exchange systems. Improving the base fluids' thermal conductivity can raise the devices' 

thermal efficiency. The idea that solid particles the size of nanometers can disperse in base fluids was 

evolved by Choi et al. [1] has grown to be a significant subject known as nanofluids. In order to be 

able to research about nanofluids, preparing these types of fluids in a stable form is a very important 

factor, because the stability of nanofluids strongly affects its thermophysical properties [2, 3]. The 

type, size, shape, concentration, base fluid, operating temperature, and addition of surfactant all affect 

the thermophysical properties of dispersed nanoparticles in nanofluids [4-6].In addition, although 

augmenting the nanoparticle concentration enriches the thermophysical features of the nanofluid, 

there is a penalty for changing the stability behavior [7-9]. Hence, optimizing parameters poses a 

significant challenge for researchers [10].Thermal conductivity is a crucial physical feature of 

nanofluids that warrants further investigation. As a result, numerous researchers have accomplished 

various experimental and numerical studies to determine the thermophysical features of nanofluids 

[11-20]. It is crucial to research the factors that have an important effect on these features. Numerous 

researchers have looked into the thermophysical features of varied nanoparticles in current years in 

various base fluids [21-28]. Esfe et al. [29] accomplished a laboratory examination into the thermal 

conductivity of nanofluids suspended in water, including 5 nm-diameter Al2O3 nanoparticles. The 

thermal conductivity of Al2O3/water was measured within a temperature range of 26 to 55 °C. The 

findings demonstrated that raising the temperature at any concentration significantly grown the 

thermal conductivity of nanofluids. Putra et al.[30] the thermal conductivity of Al2O3/water nanofluid 

with an average nanoparticle size of 131 nm was experimentally studied. The findings proven that 

the nanofluid's thermal conductivity rose by approximately 24% when the concentration was 

increased to 4%. Zhang et al.[31] have performed an experimental study to find how the concentration 

of Al2O3/water nanofluid affected the thermal conductivity. The thermal conductivity increased by 

15% when the concentration was increased to 5%. Masuda et al. [32] researched the thermal 

conductivity of titanium oxide and aluminum oxide in water-based fluid through experimentation and 

demonstrated that these nanofluids' thermal conductivity increases by 10% and 30%, respectively, 

when compared to water at a concentration of 4%. Eastman et al.[33] observed a 40% rise in CuO-

EG nanofluid thermal conductivity at 0.3 vol%. Murshed et al.[34] investigated the thermal 

conductivity of water-based titanium oxide nanofluid that had rod and spherical forms. Their findings 

demonstrated that a significant factor in raising the thermal conductivity of the nanofluid is the shape 

of the particles. After comparing the experimental outcomes with theoretical models, it was 

discovered that the thermal conductivity values of nanofluids obtained from experiments were higher 

than those estimated by the models. Mintsa et al.[35] have documented that concentration and 
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temperature impact the enhance in thermal conductivity in nanofluids of copper oxide (47 nm) and 

aluminum oxide (36 nm). A study carried out by Abdel-Samad et al. [36] have demonstrated that as 

temperature and concentration rise, the thermal conductivity of the titanium oxide-water nanofluid 

accelerates. They found that at 90°C, there was an increase in thermal conductivity of 37.35% with a 

volume fraction of 0.47%, whereas at 20°C, there was an increase of 24.11%. Eshgarf et al.[37] 

investigated the viscosity and thermal conductivity of an iron oxide-water nanofluid at various 

temperatures and concentrations. Next, artificial neural networks (ANNs) were utilized to progress 

models for forecasting the thermophysical properties mentioned. According to these findings, the 

suggested models could forecast the thermophysical characteristics of nanofluids with great accuracy. 

The statistical modeling method known as response surface methodology (RSM) describes the 

interconnectivity of system inputs and outputs using mathematical models [38]. The ability of RSM 

to capture the non-linear relationships between the inputs and the outputs has demonstrated its 

effectiveness in modeling the thermophysical characteristics of nanofluids [39, 40]. Peng et al. [41] 

have presented the findings of a trustworthy model utilizing RSM to predict the thermal conductivity 

of CuO/water nanofluid at varied temperatures and concentrations. Esfe et al.[42]  examined  the 

rheological behavior of the HNF (Hybrid Nanofluid) containing MWCNT-SiO2 (10:90) with the 

RSM. The main objective of this study was to introduce a new correlation. Khetib et al. [43] used 

RSM to investigate the viscosity of a paraffin-based CuO nanofluid. Experiments conducted at T = 

25–100 °C and mass fractions of 0 –25% provided the data used in the modeling. RSM shows that 

compared to second degree and linear polynomials, the results obtained from the third degree 

polynomial are more accurate. Table 1 shows an overview of prior researches on the use of RSM in 

estimating the thermal conductivity of nanofluids. 

 

Table 1. Applications RSM in forecasting thermal conductivity of nanofluid. 

Remarks Base fluid Nanoparticles References 

 = 0.9939 2R 

AAD% = 0.615% 

Water CuO (II) et al.[41] Peng  

,0.9982 = 2R EG/water  3O2Al Esfe et al.[44] 

R2 = 0.9957  

Std. Dev = 0.002516 

EG/water 4O3ND+Co Esfe & Hajmohammad [22] 

R2 =0.994 

MSE=2.0297×10-6   

EG/water ND + Fe3O4 Khetib et al. [45] 

=0.998 2R 

MSE=0.0013   

Water 4O3Fe Khetib et al.[46] 

 

 = 0.969 2R 

AAD% = 1.165% 

Water Fe2O3+ SiC  Malika &Sonawane [39] 

=0.9898 2R 

=0.9895 2Adjusted R 

=0.9888 2Predicted R 

Std. Dev =0.1856 

C.V% =1.31% 

 

 

 

oil GO+Fe3O4+TiO2 Shahsavar et al.[47] 

https://www.merriam-webster.com/thesaurus/examined
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=0.9882 2R 

=0.9840 2Adjusted R 

=0.9721 2Predicted R 

Std. Dev =0.0020 

C.V% =0.3263% 

Water GNP+ Al2O3 Borode & Olubambi[48]  

 

=0.9972 2R 

=0.9968 2Adjusted R 

=0.9962 2Predicted R 
3-Std. Dev =4.447 ×10 

C.V% =0.4% 

-1.05% <MOD <+ 1.08% 

Water MWCNT+ Al2O3+ 

ZnO 

Esfe et al.[49] 

= 0.9957 2R 

=0.9934 2Adjusted R 

=0.9909 2Predicted R 

Std. Dev =0.0082 

C.V% =0.6799% 

-1.754% <CD% <+ 0.9615% 

EG/water MWCNT+TiO2 Esfe et al.[50] 

AAD: average absolute deviation 

C.D: correlation deviation 

C.V: coefficient of variation 

Std. Dev: standard deviation 

R2: coefficient of determination 
MOD: margin of deviation 

MSE: mean square error 

GNP: graphene nanoplatelets 
ND: Nanodiamond 

 

The first part of this study deals with the preparation of Al2O3/water nanofluid, stabilization method 

and stability measurements. Then the method of measuring thermal conductivity is defined. The 

reasons for choosing Al2O3 nanoparticle are its desirable features such as reasonable price, the 

possibility of various applications, availability with high purity, high thermal and corrosion 

resistance, strength and high degree of mechanical hardness, and favorable environmental 

compatibility. Then, the design of the experiment, the formation of the model and the accuracy of the 

model with respect to the experimental data are investigated using Design Expert software (13.0.0). 

We establish a correlation that is dependent on the interaction of operating parameters and evaluate 

its reliability with experimental data. Based on the literature, it can be realized that most of the models 

developed for the prediction of thermal conductivity have certain limitations that limit the application 

of the correlations to other nanofluids. So, the primary objective of this work is to evaluate the 

possible effect of the operating temperature and also the SVF (solid volume fraction) and their 

interactions on the thermal conductivity of the nanofluid. The other goal of this study is the 

optimization of parameters to maximize thermal conductivity of the system using RSM. The last goal 

of this research was to compare the outcomes of the estimation of RSM model with other models 

presented in the literature. 
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2.  Nanofluid preparation and property measurement 

2.1 Nanofluid preparation and stability check 

There are two methods for nanofluid production, including one-step and two-step. Due to the 

commercial availability of nanoparticles, numerous researchers have developed a two-part process 

for manufacturing nanofluid. Specification of γ-alumina nanoparticles (obtained from US Research 

Nanomaterials, Inc.) is displayed in Table 2. Transmission electron microscopy (TEM) was employed 

to estimate the size of primary nanoparticles. Based on the illustration in Fig.1, it is evident that the 

nanoparticles have an approximately spherical shape. 

 

Table 2. Specification of nanoparticle used in this study. 

Aluminum Oxide (gamma) Nanoparticle 

20  Average particle size (nm) 

>99% Purity 

3890 )3m/kg(Density   

White Color 

Nearly spherical Morphology 

>138 )g/2m(Specific area  

880 Specific heat ( J /kg K) 

46 Thermal conductivity( W/m K) 

 

 
Fig.1. Image of TEM nanoparticles used in this study.  

 

In this study, a two-step method was used to prepare nanofluids. The stability of nanofluids is a 

significant concern in this technique. Both thermophysical and heat transfer properties are closely 
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tied to stability of a nanofluid [51]. The long-term stability of nanofluids is a crucial factor in 

determining their practical applicability. In this study, the concentration (0.05, 0.5, 1, and 2 vol%) 

and temperature (25, 35, and 45 °C) of the nanofluids were chosen. Alumina nanoparticles are added 

to distilled water as the base fluid, and their weight is measured to four decimal places. The fluid was 

stirred with a magnetic stirrer for one hour and then transferred to an ultrasonic vibrator (BANDELIN 

Company - power 240 W and frequency 35 kHz) for three hours. In this study, we employed 

sedimentation visualization and dynamic light scattering (DLS) to assess the stability of nanofluids. 

The results of monitoring the stability of nanofluid with sedimentation visualization method showed 

that it was stable for at least 24 h. The mentioned method is used in references [52-56]. The size 

distribution of nanoparticles in the dispersed phase is detected by DLS. DLS technique was employed 

to obtain the distribution of particle size in nanofluids using a Malvern Zetesizer Nano (Malvern 

Panalytical, UK) for studying clustering and agglomeration phenomena. Samples, both fresh and old 

(after 7 days), were analyzed to determine the particle size distribution. The findings are outlined in 

Table 3. Because DLS measures the hydrodynamic radius of nanoparticles, the average size obtained 

by these particles was larger than what could be seen through a micrograph of TEM. The findings 

also indicate that a raise in the vol. fraction of nanofluid leads to a larger particle size. The increased 

agglomeration of nanoparticles upon their addition to the basefluid can be attributed to this 

phenomenon. In addition, the results show that freshly prepared nanofluids in different concentrations 

have larger average diameter of nanoparticles than nanofluids after 7 days old. Such a phenomenon 

is related to the fact that the larger aggregated particles settle, and this causes the easy detection of 

smaller particles by DLS [57, 58]. The mentioned findings are in agreement with the results of studies 

[57, 59, 60]. 

 

Table 3. Average diameter of nanoparticles at different times obtained from dynamic light scattering (DLS). 
Nanoparticle diameter (nm) Concentration ( vol.%) 

7 days old freshly  

90 134 0.05 

129 161 0.5 

147 169 1 

197 218 2 

 

2.2 Measurement of thermal conductivity  

A KD2 Pro thermal properties analyzer (Decagon Devices, Inc. USA, Fig 2) was applied to measure 

the thermal conductivity of the nanofluid under different experimental conditions. The measurement 

works in the range of 0.02-2 W/m.K. This device is fitted with a KS-1 type needle sensor, which is 

placed vertically and centrally in the nanofluid container. The temperature of the sample was 

controlled with the aid of a water bath during the measurement process. To avoid the possibility of 

transient heat effects, a 30-minute interval between subsequent measurements was chosen to 
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minimize their effect on the temperature increase near the probe. Therefore, the obtained results are 

stable and repeatable. To achieve precision and consistent results, the average of three thermal 

conductivity measurements for each sample is used. The uncertainties in thermal conductivity 

measurements was predicted based on the accuracies of the tools given in table 4 and calculated by 

the method [61].The maximum uncertainty in the measured thermal conductivity was 1.8 %. 

 

 

Fig. 2. Thermal properties analyzer device 

Table 4. Accuracy of the instruments. 

Accuracy Instruments 

±0.0001 Weighing balance 

3 kHz ± Ultrasonic bath 

±0.01 W/m.K Thermal conductivity apparatus 

±0.1 °C Water bath 

 

3.RSM 

Many engineering phenomena have been modeled using theories. A suitable mathematical model for 

many phenomena is not available due to various controlling factors, computational complexity, or 

unknown mechanisms. Experimental modeling techniques are efficient. One of the approaches to 

experimental modeling is RSM. In this approach, the response variable is affected by numerous 

independent input parameters, aiming to optimize the response variable and analyze the factors 

impacting it while minimizing the number of tests conducted. Response surface methodology (RSM) 

has many applications in different topics such as essential oil [62] and seed oil extraction [63, 64], 

optimization and mathematical modeling [65, 66], impregnation [67, 68], nanoparticle formation [69-

71], and etc. 
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4. Results and discussion 

The purpose of the RSM evaluation is to apply a statistical regression approach to model the 

correlation between the input variable SVF and T and the output response variable (KR = thermal 

conductivity ratio =
𝐾𝑛𝑓

𝐾𝑏𝑓
  ) of the nanofluid. Table 5 displays the p-values, Adjusted R2 and Predicted 

R2 values for the linear, two-factor interaction (2FI), quadratic and cubic models that were examined 

in the analysis. 

 

Table 5. Summary of statistics for the various models.  
Source Sequential p-value Adjusted R² Predicted R²  

Linear 0.0002 0.8156 0.7353  

2FI 0.7769 0.7948 0.6797  

Quadratic 0.0030 0.9606 0.8776 Suggested 

Cubic 0.2971 0.9534 0.8113 Aliased 

 

The sequential p-value column denotes the importance level of each model term as they were 

sequentially added to the model. It quantifies the probability of achieving the recorded data or even 

more extreme results under the assumption that the null hypothesis holds true. A p-value below 0.05 

indicates that the term is statistically important, signifying its impact on the variability of the response 

variable [72]. The Adjusted R2 value indicates the proportion of the overall variance in the dependent 

variable that is determined by the model, while also considering the quantity of independent variables 

included. A higher Adjusted R2 value implies a better fit between the model and the data. The 

Predicted R2 column displays the anticipated proportion of variability in forthcoming observations 

that the model can clarify. A greater Predicted R2 value suggests that the model is expected to 

demonstrate strong performance when applied to new data. From this table, we can see that the 

quadratic model has the best Adjusted R2 (0.9606) and Predicted R2 (0.8776), which shows that it is 

the most accurate model to provide the best fit to the data and to estimate the response variable. The 

adjusted R2 value for the cubic model is also high (0.9534), whereas the adjusted R2 values for the 

2FI and Linear models are comparatively lower. The Cubic model exhibits a low Predicted R2 

(0.8113) and is marked as Aliased, indicating that it cannot be differentiated from another model due 

to collinearity or confounding factors. Hence, the quadratic model has been chosen for further 

examination in this study. Table 6 displays the results of the ANOVA analysis for the quadratic 

model. The sources of variability are presented, along with their corresponding sum of squares, 

degrees of freedom, mean square, F-value, and p-value. The F-value is utilized in ANOVA to assess 

the statistical importance of the variation among factors [73]. The model is considered statistically 

significant with an F-value of 54.59, indicating that the probability of obtaining such a high F-value 

by random chance is extremely low at 0.01%. The results indicate that both factors the SVF (A) and 
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temperature (B) have extremely low p-values (<0.0003), signifying their significant influence on the 

response. Both the AB interaction term and B2 have p-values that exceed 0.05, suggesting that they 

are not statistically important. Conversely, A2 possesses a p-value of 0.0012, denoting its significance 

as a term. 

 

Table 6. ANOVA outcome for the suggested quadratic model.  
Source Sum of Squares df Mean Square F-value p-value  

Model 0.1581 5 0.0316 54.59 < 0.0001 significant 

A-SVF 0.1134 1 0.1134 195.68 < 0.0001  

B-T 0.0337 1 0.0337 58.19 0.0003  

AB 0.0003 1 0.0003 0.4471 0.5286  

A² 0.0193 1 0.0193 33.30 0.0012  

B² 0.0014 1 0.0014 2.33 0.1778  

Residual 0.0035 6 0.0006    

Cor Total 0.1616 11     

 

Table 7 shows the fit statistics of the quadratic model. The table denotes that the Predicted R2 value 

of 0.8776 nearly matches the Adjusted R2 value of 0.9606, with a difference of less than 0.2. This 

indicates that the model can be trusted when making estimations for future observations. The Adeq 

Precision assesses the model's quality by comparing the variation present in the data with the variation 

anticipated by the model. A ratio exceeding 4 is deemed satisfactory, and a viewed ratio of 23.2535 

suggests that the model is suitable for exploring the design space. 

 

Table 7. Fit statistics for the quadratic model.  

Std. Dev. Mean CV % R2 Adjusted R2 Predicted R2 Adeq Precision 

0.0241 

 

1.29 

 

1.87 

 

0.9785 

 

0.9606 

 

0.8776 

 

23.2535 

 

 

Table 8 exhibits the coefficient estimates, degrees of freedom, standard error, 95% confidence 

interval, and Variance Inflation Factors (VIFs) for each factor in the KR. The coefficient estimate 

signifies the anticipated alteration in the response when the value of a factor changes by one unit, 

while all other factors remain constant. In an orthogonal design, the intercept represents the mean 

response of all the runs. The coefficients indicate adjustments to the mean response according to the 

factor configurations. When the factors are orthogonal, the Variance Inflation Factors (VIFs) will be 

equal to 1. VIFs exceeding 1 indicate the existence of multicollinearity, with a stronger correlation 

between factors as the VIF value increases. Typically, VIFs that are below 10 are considered 

acceptable. The intercept coefficient estimate is 1.34, which suggests the average response of all runs 

when all variables are set to their baseline values. The coefficient estimate for factor A (SVF) is 

0.1318, indicating that a one-unit increase in SVF leads to a 0.1318 increase in the response, while 

all other factors remain constant. The factor B (temperature) has a coefficient estimate of 0.0661, 

suggesting that a one-unit increase in temperature leads to a response increase of 0.0661, while 
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holding all other factors constant. The AB coefficient estimate is 0.0077, denoting that the interaction 

between factors A and B has a very minor positive effect on the response. The coefficient estimate 

for A2 is -0.0920, indicating that a one-unit increase in A2 leads to a reduction of 0.0920 in the 

response, while all other factors held constant. The coefficient estimate for B2 is 0.0225. Additionally, 

VIFs offer insights into the collinearity present among factors. In this instance, they are all near or 

below 1.04, indicating that collinearity is not a significant concern in the model. 

 

Table 8. Coefficient estimate in terms of the coded factors. 
Factor Coefficient Estimate df Standard Error 95% CI Low 95% CI High VIF 

Intercept 1.34 1 0.0153 1.31 1.38  

A-SVF 0.1318 1 0.0094 0.1088 0.1549 1.02 

B-T 0.0661 1 0.0087 0.0449 0.0873 1.04 

AB 0.0077 1 0.0114 -0.0204 0.0357 1.04 

A² -0.0920 1 0.0159 -0.1310 -0.0530 1.02 

B² 0.0225 1 0.0147 -0.0136 0.0586 1.0000 

 

 

The relationship between the KR and the actual values of the SVF and T factors is illustrated in Eq. 

(1). The coefficients assigned to each factor determine their individual impact on KR, while the 

interaction term signifies the combined effect of both factors. This equation, different the coded one, 

is meant to forecast the actual response values in their original units. Nevertheless, it is not possible 

to compare the coefficients in order to assess the relative strength of each factor, as they have been 

adjusted to match with the units of each factor. Furthermore, the center of the design space is not 

depicted by the intercept. 

 

𝐾𝑅 = 1.17601 + 0.306159 ∗ 𝑆𝑉𝐹 − 0.009947 ∗ 𝑇 + 0.000785 ∗ 𝑆𝑉𝐹 ∗ 𝑇 − 0.096795 ∗ 𝑆𝑉𝐹2  +

0.000225 ∗ 𝑇2                                                                                                                                          (1) 

 

The perturbation plot in Fig. 3 demonstrates the effect of two factors on the KR response. The diagram 

visually depicts the relationship between the factors being examined and the system's response. The 

diagram is created by perturbing a single factor at a time while keeping the other factors fixed and 

monitoring the resulting alterations in the response. This permits you to visualize the curvature of the 

response surface and identify interactions between factors. The slope of each line demonstrates the 

sensitivity of the response to that particular factor, whereas the curvature of the line signifies the 

existence of any interactions with the other factors. According to Fig. 3, it can be viewed that factor 

A exerts the greatest influence on the KR, whereas factor B demonstrates the least impact. 
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Fig. 3. Perturbation plot of the influence of input factors on the KR. 

 

 

Fig. 4 displays the comparison of the outcomes gained  from the experimental examination with the 

anticipated results deduced from the correlations suggested by RSM. Fig. 4 demonstrates that the 

actual and predicted outcomes are nearly similar, with just a few small deviations, as evidenced by 

Fig. 5(a-c). The studentised residuals distribution is depicted in Fig. 5a, showing that most of the 

residuals are concentrated near the '0' reference line. This implies that the correlations established are 

reliable and the models accurately captured the behavior of the data. Furthermore, in Fig. 5b, one can 

observe a reasonably random distribution of residuals throughout the run order, suggesting that the 

model adequately addresses the temporal dimension of the data. In Fig. 5c shows the normal 

probability graph of selected model. This graph illustrates the normal distribution of the residuals and 

their linearity. Even for typical data, some degree of scattering can be expected. If the data follows 

an s-shaped curve, it is necessary to employ transfer functions. As shown in Fig. 5c, the selected 

model is mostly linear with minimal deviation. A normal probability plots is used to evaluate how a 

small data set is normally distributed. 
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Fig. 4. Correlation between the experimental and predicted values.  

 

 
(a) 

 

 
(b) 
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(c)  

Fig. 5. Plot of externally studentised residuals in relation to (a) predicted value (b) run order (c) normal plot 
 

A lambda value of 1 in Box-Cox plot analysis indicates that the original data fits well. Box-Cox plots 

are utilized to transform the data distribution into a normal distribution. Fig. 6 displays the Box-Cox 

plots of the quadratic model. This plot offers guidance on selecting the appropriate transfer function. 

The optimal transfer function is recommended by considering the best lambda value, situated at the 

minimum point of the curve. If the 95% confidence interval surrounding this lambda includes 1, the 

software will not suggest any type of transformation. The quadratic model plot, as depicted in Fig. 6, 

exhibits suitable behavior, with the lambda line predominantly positioned at the lower bottom of the 

curve. 
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Current λ=1 

Best λ=0.24 

Recommended transform=none 

Fig. 6. Box-Cox diagrams for determining Lambda value. 
 

The 2D contour and 3D surface plots in Figs. 7 and 8 demonstrate how different input parameters 

affect the KR of the nanofluid. Fig. 7 presents a 2D contour illustrating the effect of SVF and T on 

KR, which helps us understand the relationship between them. Instead, Fig. 8 improves deducing by 

exhibiting a three-dimensional surface plot that allows a more detailed visualization of the complex 

interaction between SVF, T and KR. The plot contour lines link points sharing the same KR value, 

enabling us to pinpoint regions with higher or lower KR values and detect any trends or patterns.  

Figures indicate that the KR of the nanofluid enhances rapidly as the SVF level rises. Additionally, 

the figures exhibit that the KR enhances as the temperature raises, (although this effect is not tangible 

compared to the SVF.), which can be attributed to the increase in Brownian motion due to increasing 

temperatures. These results align with earlier research studies that have been published [74, 75]. 
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Fig. 7. 2D contour plot of the impact of SVF and T on the KR. 

 

 
 

Fig. 8. 3D surface plot of the impact of SVF and T on the KR. 
 

 

5. Optimum response 

An optimization was performed on the thermal conductivity ratio (KR) of the Al2O3 /water nanofluid 

to achieve its maximum value. This optimization involved adjusting the SVF and T of the nanofluid. 

In order to optimize the process, the KR of the nanofluid was maximized by utilizing the correlation 

acquired through RSM. The optimization results demonstrated that the nanofluid's KR is maximized 

at 45 ◦C, reaching 1.485, within the investigated range of T (25 to 45 ◦C) and SVF (0.05 to 2% vol.). 

Achieving this value is possible only when the SVF of the nanofluid is adjusted to 1.764%. Table 9 

showcases a range of optimal solutions for nanofluid. Fig. 9(a&b) displays the value of desirability 

and optimal values of KR at different points. 
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Table 9.  Different optimal solutions for nanofluid. 
Number SVF T KR Desirability  

1 1.764 45.000 1.485 0.988 Selected 

2 1.754 45.000 1.485 0.988  

3 1.780 45.000 1.485 0.988  

4 1.744 45.000 1.485 0.988  

5 1.808 45.000 1.485 0.988  

6 1.879 45.000 1.484 0.985  

7 1.598 45.000 1.483 0.981  

8 1.578 45.000 1.482 0.980  

9 2.000 44.046 1.469 0.947  

 

 

 
(a) 

 
(b) 

Fig. 9. Optimal values of KR in different SVF (a) desirability (b) KR. 

 

Fig. 10 shows the comparison of the proposed RSM model with other theoretical and experimental 

models in the literature, in order to estimate the KR of the nanofluid. As it is clear from the Fig 10, 
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other models performed poorly in estimation, while the RSM model has a very good match with the 

experimental data. Also, in table 10, the comparison of different models has been done quantitatively 

and with different statistical parameters. It is clear in the table that in all statistical parameters, the 

best results are related to the RSM model. The mentioned findings are in agreement with the results 

[76].Table 11 displays the mathematical representation of statistical parameters employed in this 

research. 

 

 

 

 
Fig.10. Comparison of different models in forecasting of KR nanofluid. 

 

 

 

Table 10. The comparison between the results of the RSM model and other models for estimation of KR nanofluid. 

Models AARD% MSE RMSE Maximum MOD% 

WASP [77] 19.3 0.097 0.311 

 

29.2 

Williams et al [78] 

 

18.5 0.088 0.297 

 

26.9 

Mintsa et al [35] 

 

20.1 0.1 0.323 

 

31.4 

Ho et al. [79] 19.2 0.095 0.308 

 

28.4 

RSM 3.7 0.007 0.0841 

 

14.3 
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Table 11. The mathematical expressions of statistical parameters used in this study. 

Statistical parameters Formula 

Average absolute relative deviation percent (AARD%) [80] 
𝐴𝐴𝑅𝐷% =

100

𝑛
∑

|𝑃𝑖𝑒𝑥𝑝 − 𝑃𝑖𝑝𝑟𝑒𝑑|

𝑃𝑖𝑒𝑥𝑝
𝑖

 

MSE [80] 
𝑀𝑆𝐸 =

1

𝑛
∑(|𝑃𝑖𝑒𝑥𝑝 − 𝑃𝑖𝑝𝑟𝑒𝑑|)

2

𝑖

 

Root Mean Square Error (RMSE) [76] 
𝑅𝑀𝑆𝐸 = √

1

𝑛
∑(𝑃𝑖𝑒𝑥𝑝 − 𝑃𝑖𝑝𝑟𝑒𝑑)

2

𝑖

  

Margin of deviation (MOD%) [81] 
𝑀𝑂𝐷% =

𝑃𝑖𝑝𝑟𝑒𝑑 − 𝑃𝑖𝑒𝑥𝑝

𝑃𝑖𝑒𝑥𝑝

× 100 

 

 

6. Conclusion 

In this study, thermal conductivity of Al2O3/water nanofluid was investigated. RSM was effectively 

utilized in this study, yielding equations that accurately estimate the KR of the nanofluid. RSM 

provided different equations to calculate KR based on independent parameters such as SVF and T. 

The quadratic model has been demonstrated to be superior to the other models through the use of 

statistical parameters and plots. R2, adjusted R2, predicted R2 and Std. Dev parameters of the quadratic 

model were equal to 0.9785, 0.9606, 0.8776 and 0.0241 respectively, which signifies the accuracy of 

the model. As well, the difference between adjusted R2 and predicted R2 is less than 0.083 indicates 

the high accuracy of the proposed model. The residual plot, the normal probability plot, the Box-Cox 

plot and the predicted vs. actual plot also showed that quadratic model has a good accuracy, and is 

well capable of estimating the KR of the nanofluid. The experimental outcomes displayed that a raise 

in SVF and T caused an increase in KR. This trend was estimated by RSM methods with very high 

accuracy. Ultimately, the optimum combination for better KR was found at SVF = 1.764% and T = 

45 ◦C.  
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Nomenclature  

 

 

Greek symbols 

λ  lambda value  

 

Subscripts 

bf  base fluid 

Exp experimental 

Pred predicted 

  
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2FI two-factor interaction 
AAD average absolute deviation 
ANOVA analysis of variance 
C.D correlation deviation 
CV (%) coefficient of Variation 

D dimention 

DF degrees of Freedom 

DLS dynamic light scattering 

EG ethylene glycol 
GNP graphene nanoplatelets 
GO graphene oxide 

h hour 

HNF hybrid nanofluid 

KR Thermal conductivity 

ration (Knf/Kbf) 

MOD margin of deviation 

MSE mean square error 

MWCNT multi-walled carbon 

nanotubes 

ND nanodiamond 

R2 coefficient of 

determination(- ) 

RSM response surface 

methodology 
SR Shear rate 
Std. Dev standard deviation 
SVF solid volume fraction 

T Temperature (°C) 

TEM Transmission electron 

microscopy 

VIF variance Inflation Factors 

vol volume 

W water 
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