[1] Geacai, S., Iulian, O. and Nita, I. (2015) “Measurement, correlation and prediction of biodiesel blendsviscosity.” Fuel, Vol. 143, pp.268–274.
[2] Gülüm, M. and Bilgin, A. (2015). “Density, flash point and heating value variations of corn oil biodiesel–diesel fuel blends.” Fuel Processing Technology, Vol.134, pp.456–464.
[3] Knothe, G., Gerpen, J.V. and Krahl, J. (2005). The biodiesel handbook. IL: AOCS Press.
[4] Ma, F.R. and Hanna, M.A. (1999). “Biodiesel production: a review.” Bioresour. Technol., Vol. 70, pp. 1–15.
[5] Benjumea, P., Agudelo, J. and Agudelo, A. (2008). “Basic properties of palm oil biodiesel–diesel blends.” Fuel, Vol. 87, pp. 2069–2075.
[6] Yoon, S.H., Park, S.H. and Lee, C.S. (2008). “Experimental investigation on the fuel properties of biodiesel and its blends at various temperatures.” Energy Fuels, Vol. 22, pp. 652–656.
[7] Alptekin, E. and Canakci, M. (2008). “Determination of the density and the viscosities of biodiesel–diesel fuel blends.” Renewable Energy, Vol. 33, pp. 2623–2630.
[8] Tesfa, B., Mishra, R., Gua, F. and Powles, N. (2010) “Prediction models for density and viscosity of biodiesel and their effects on fuel supply system in CI engines.” Renewable Energy, Vol. 35, pp. 2752-2760.
[9] Shu, Q., Yang, B., Yang, J. and Qing, S. (2007) “Predicting the viscosity of biodiesel fuels based on the mixture topological index method.” Fuel, Vol. 86, pp. 1849–1854.
[10] Barabás, I. (2015). “Liquid densities and excess molar volumes of ethanol+biodiesel binary system between the temperatures 273.15 K and 333.15 K.” Journal of Molecular Liquids, Vol. 204, pp. 95–99.
[11] Freitas, S.V.D., Pratas, M.J., Ceriani, R., Lima, A.S. and Coutinho, J.A.P. (2011). “Evaluation of predictive models for the viscosity of biodiesel.” Energy Fuels, Vol. 25, pp. 352–358.
[12] Ceriani, R., Goncüalves, C.B., Rabelo, J., Caruso, M., Cunha, A.C.C., Cavaleri, F.W. et al. (2007). “Group contribution model for predicting viscosity of fatty compounds.” J. Chem. Eng. Data, Vol. 52, pp. 965-972.
[13] Krisnangkura, K., Yimsuwan, T. and Pairintra, R. (2006). “An empirical approach in predicting biodiesel viscosity at various temperatures.” Fuel, Vol. 85, pp. 107–113.
[14] Pratas, M.J., Freitas, S., Oliveira, M.B., Monteiro, S.C., Lima, A.S. and Coutinho, J.A.P. (2010). “Densities and viscosities of fatty acid methyl and ethyl esters.” J. Chem. Eng. Data, Vol. 55, pp. 3983–3990.
[15] Pratas, M.J., Freitas, S., Oliveira, M.B., Monteiro, S.C., Lima, A.S. and Coutinho, J.A.P. (2011). “Densities and viscosities of minority fatty acid methyl and ethyl esters present in biodiesel.” J. Chem. Eng. Data, Vol. 56, pp. 2175–2180.
[16] Nogueira, C.A., Feitosa, F.X., Fernandes, F.A.N., Santiago, R.S. and de Sant‟Ana, H.B. (2010). “Densities and viscosities of binary mixtures of babassu biodiesel + cotton seed or soybean biodiesel at different temperatures.” J. Chem. Eng. Data, Vol. 55, pp. 5305–5310.
[17] Feitosa, F.X., Rodrigues, M.L., Veloso, C.B., Cavalcante, C.L., Albuquerque, M.C.G. and de Sant‟Ana, H.B. (2010). “Viscosities and densities of binary mixtures of coconut + colza and coconut + soybean biodiesel at various temperatures.” J. Chem. Eng. Data, Vol. 55, pp. 3909–3914.
[18] Tate, R.E., Watts, K.C., Allen, C.A.W. and Wilkie, K.I. (2006). “The densities of three biodiesel fuels at temperatures up to 300° C.” Fuel, Vol. 85, pp. 1004–1009.
[19] Nita, I., Geacai, S. and Iulian, O. (2011). “Measurements and correlations of physico-chemical properties to composition of pseudo-binary mixtures with biodiesel.” Renewable Energy, Vol. 36, pp. 3417-3423.
[20] Ramírez-Verduzco, L.F., García-Flore, B.E., Rodríguez-Rodríguez, J.E. and Jaramillo-Jacob, A.R. (2011). “Prediction of the density and viscosity in biodiesel blends at various temperatures.” Fuel, Vol. 90, pp. 1751–1761.164.
[21] Tate, R.E., Watts, K.C., Allen, C.A.W. and Wilkie, K.I. (2006). “The viscosities of three biodiesel fuels at temperatures up to 300 C.” Fuel, Vol. 85, pp. 1010–1015.
[22] Tat, M.E. and Van Gerpen, J.H. (1999). “The kinematic viscosity of biodiesel and its blends with diesel fuel.” J. Am. Oil Chem. Soc., Vol. 76, pp. 1511-1513.
[23] Yuan, W., Hansena, A.C., Zhang, Q. and Tan, Z. (2005). “Temperature-dependent kinematic viscosity of selected biodiesel fuels and blends with diesel fuel.” J. Am. Oil Chem. Soc., Vol. 82, pp. 195-199.
[24] Krisnangkura, K., Sansa-ard, C., Aryusuk, K., Lilitchan, S. and Kittiratanapiboon, K. (2010). “An empirical approach for predicting kinematic viscosities of biodiesel blends.” Fuel, Vol. 89, pp. 2775–2780.
[25] Grunberg, L. and Nissan, A.H. (1949). “Mixture law for viscosity.” Nature, Vol. 164, pp. 799–800.
[26] Joshi, R.M. and Pegg, M.J. (2007). “Flow properties of biodiesel fuel blends at low temperatures.” Fuel, Vol. 86, pp. 143–151.
[27] Bhat, N. and McAvoy, T.J. (2000). “Use of neural nets for dynamic modeling and control of chemical process systems.” Comput. Chem. Eng., Vol. 14, pp. 573-583.
[28] Moradi, M.R., Nazari, K., Alavi, S. and Mohaddesi, M. (2013). “Prediction of Equilibrium Conditions for Hydrate Formation in Binary Gaseous Systems Using Artificial Neural Networks.” Energy Technol., Vol. 1, pp. 171-176.
[29] Moradi, G., Mohadesi, M. and Moradi, M.R. (2013). “Prediction of wax disappearance temperature using artificial neural networks.” J. Pet. Sci. Eng., Vol. 108, pp. 74-81.
[30] Mohadesi, M., Moradi, G. and Mousavi, H.-S. (2014). “Estimation of Binary Infinite Dilute Diffusion Coefficient Using Artificial Neural Network.” J. Chem. Pet. Eng., Vol. 48, pp. 27-45.
[31] Molga, E. and Cherbanski, R. (1999). “Hybrid first-principle-neural network approach to modeling of the liquid-liquid reacting system.” Chem. Eng. Sci., Vol. 54, pp. 2467-2473.
[32] Fissore, D., Barresi, A.A. and Manca, D. (2004). “Modeling of methanol synthesis in a network of forced unsteady-state ring reactors by artificial neural networks for control purposes.” Chem. Eng. Sci., Vol. 59, pp. 4033-4041.
[33] Kito, S., Satsuma, A., Ishikura, T., Niwa, M., Murakami, Y. and Hattori, T. (2004). “Application of neural network to estimation of catalyst deactivation in methanol conversion.” Catal. Today, Vol. 97, pp. 41-47.
[34] Papadokonstantakis, S., Machefer, S., Schnitzleni, K. and Lygeros, A.I. (2005). “Variable selection and data pre-processing in NN modeling of complex chemical processes.” Comput. Chem. Eng., Vol.29, pp. 1647-1659.
[35] Omata, K., Nukai, N. and Yamada, M. (2005). “Artificial neural network aided design of a stable Co-MgO catalyst of high-pressure dry reforming of methane.” Ind. Eng. Chem. Res., Vol. 44, pp. 296-301.
[36] Himmelblau, D. (2008). “Accounts of experiences in the application of artificial neural networks in chemical engineering.” Ind. Eng. Chem. Res., Vol. 47, pp. 5782-5796.
[37] Hashemipour, H., Baroutian, S., Jamshidi, E. and Abazari, A. (2009). “Experimental study and artificial neural networks simulation of activated carbon synthesis in fluidized bed reactor.” Int. J. Chem. Reactor Eng., Vol. 7, A80.
[38] Nabavi, R., Salari, D., Niaei, A. and Vakil-Baghmisheh, M.-T. (2009). “A neural network approach for prediction of main product yields in methanol to olefins process.” Int. J. Chem. Reactor Eng., Vol. 7, A26.
[39] Khataee, A and Khani, A. (2009). “Modeling of nitrate adsorption on granular activated carbon (GAC) using artificial neural network (ANN).” Int. J. Chem. Reactor Eng., Vol. 7, A5.
[40] Eslamloueyan, R. and Khademi, M.H. (2009). “Estimation of thermal conductivity of pure gases by using artificial neural networks.” Int. J. Thermal. Sci., Vol. 48, pp. 1094–1101.
[41] Eslamloueyan, R. and Khademi, M.H. (2009). “Using artificial neural networks for estimation of thermal conductivity of binary gaseous mixtures.” J. Chem. Eng. Data, Vol. 54, pp. 922–932.
[42] Eslamloueyan, R. and Khademi, M.H. (2010). “A neural network-based method for estimation of binary gas diffusivity.” Chemom. Intell. Lab. Syst., Vol. 104, pp. 195–204.
[43] Encinar, J.M., Sánchez, N., Martínez, G. and García, L. (2011). “Study of biodiesel production from animal fats with high free fatty acid content.” Bioresour. Technol., Vol. 102, pp. 10907–10914.
[44] Haykin, S. (1999). Neural networks: a comprehensive foundation. 2nd Ed. Englewood Cliffs, NJ: Prentice-Hall.
[45] Levenberg, K. (1994). “A method for the solution of certain problems in least squares.” SIAM J. Numer. Anal., Vol. 16, 588–604.
[46] Marquardt, D. (1963). “An algorithm for least-squares estimation of nonlinear parameters.” SIAM J. Appl. Math., Vol. 11, pp. 431–441.
[47] Hagan, M.T. and Menhaj, M. (1994). “Training feedforward networks with the Marquardt algorithm.” IEEE Trans. Neural. Netw., Vol. 5, pp. 989–993.